Köthe Ullrich, Herrmannsdörfer Frank, Kats Ilia, Hamprecht Fred A
Multi-Dimensional Image Processing Group, University of Heidelberg, Speyerer Strasse 6, 69115, Heidelberg, Germany,
Histochem Cell Biol. 2014 Jun;141(6):613-27. doi: 10.1007/s00418-014-1211-4. Epub 2014 Apr 11.
Although there are many reconstruction algorithms for localization microscopy, their use is hampered by the difficulty to adjust a possibly large number of parameters correctly. We propose SimpleSTORM, an algorithm that determines appropriate parameter settings directly from the data in an initial self-calibration phase. The algorithm is based on a carefully designed yet simple model of the image acquisition process which allows us to standardize each image such that the background has zero mean and unit variance. This standardization makes it possible to detect spots by a true statistical test (instead of hand-tuned thresholds) and to de-noise the images with an efficient matched filter. By reducing the strength of the matched filter, SimpleSTORM also performs reasonably on data with high-spot density, trading off localization accuracy for improved detection performance. Extensive validation experiments on the ISBI Localization Challenge Dataset, as well as real image reconstructions, demonstrate the good performance of our algorithm.
尽管有许多用于定位显微镜的重建算法,但由于难以正确调整可能大量的参数,它们的应用受到了阻碍。我们提出了SimpleSTORM算法,该算法在初始自校准阶段直接从数据中确定合适的参数设置。该算法基于精心设计但简单的图像采集过程模型,这使我们能够对每个图像进行标准化,使得背景具有零均值和单位方差。这种标准化使得通过真正的统计检验(而不是手动调整阈值)来检测斑点以及使用高效的匹配滤波器对图像进行去噪成为可能。通过降低匹配滤波器的强度,SimpleSTORM在高斑点密度的数据上也能有合理的表现,以牺牲定位精度来提高检测性能。在ISBI定位挑战赛数据集上进行的广泛验证实验以及真实图像重建,都证明了我们算法的良好性能。