Suppr超能文献

基于磁共振成像的前列腺癌放射组学模型:一项叙述性综述。

Magnetic Resonance Imaging Based Radiomic Models of Prostate Cancer: A Narrative Review.

作者信息

Chaddad Ahmad, Kucharczyk Michael J, Cheddad Abbas, Clarke Sharon E, Hassan Lama, Ding Shuxue, Rathore Saima, Zhang Mingli, Katib Yousef, Bahoric Boris, Abikhzer Gad, Probst Stephan, Niazi Tamim

机构信息

School of Artificial Intelligence, Guilin University of Electronic Technology, Guilin 541004, China.

Lady Davis Institute for Medical Research, McGill University, Montreal, QC H3S 1Y9, Canada.

出版信息

Cancers (Basel). 2021 Feb 1;13(3):552. doi: 10.3390/cancers13030552.

Abstract

The management of prostate cancer (PCa) is dependent on biomarkers of biological aggression. This includes an invasive biopsy to facilitate a histopathological assessment of the tumor's grade. This review explores the technical processes of applying magnetic resonance imaging based radiomic models to the evaluation of PCa. By exploring how a deep radiomics approach further optimizes the prediction of a PCa's grade group, it will be clear how this integration of artificial intelligence mitigates existing major technological challenges faced by a traditional radiomic model: image acquisition, small data sets, image processing, labeling/segmentation, informative features, predicting molecular features and incorporating predictive models. Other potential impacts of artificial intelligence on the personalized treatment of PCa will also be discussed. The role of deep radiomics analysis-a deep texture analysis, which extracts features from convolutional neural networks layers, will be highlighted. Existing clinical work and upcoming clinical trials will be reviewed, directing investigators to pertinent future directions in the field. For future progress to result in clinical translation, the field will likely require multi-institutional collaboration in producing prospectively populated and expertly labeled imaging libraries.

摘要

前列腺癌(PCa)的管理依赖于生物侵袭性的生物标志物。这包括进行侵入性活检以促进对肿瘤分级的组织病理学评估。本综述探讨了将基于磁共振成像的放射组学模型应用于PCa评估的技术过程。通过探索深度放射组学方法如何进一步优化对PCa分级组的预测,将清楚地了解人工智能的这种整合如何缓解传统放射组学模型面临的现有主要技术挑战:图像采集、小数据集、图像处理、标记/分割、信息特征、预测分子特征以及纳入预测模型。还将讨论人工智能对PCa个性化治疗的其他潜在影响。将突出深度放射组学分析的作用——一种从卷积神经网络层提取特征的深度纹理分析。将回顾现有的临床工作和即将开展的临床试验,为研究人员指明该领域相关的未来方向。为了使未来的进展实现临床转化,该领域可能需要多机构合作来生成前瞻性填充且经过专家标记的成像库。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c06/7867056/a09561d3c525/cancers-13-00552-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验