Suppr超能文献

重建和重编程神经胶质瘤干细胞的肿瘤增殖潜能。

Reconstructing and reprogramming the tumor-propagating potential of glioblastoma stem-like cells.

机构信息

Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.

Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.

出版信息

Cell. 2014 Apr 24;157(3):580-94. doi: 10.1016/j.cell.2014.02.030. Epub 2014 Apr 10.

Abstract

Developmental fate decisions are dictated by master transcription factors (TFs) that interact with cis-regulatory elements to direct transcriptional programs. Certain malignant tumors may also depend on cellular hierarchies reminiscent of normal development but superimposed on underlying genetic aberrations. In glioblastoma (GBM), a subset of stem-like tumor-propagating cells (TPCs) appears to drive tumor progression and underlie therapeutic resistance yet remain poorly understood. Here, we identify a core set of neurodevelopmental TFs (POU3F2, SOX2, SALL2, and OLIG2) essential for GBM propagation. These TFs coordinately bind and activate TPC-specific regulatory elements and are sufficient to fully reprogram differentiated GBM cells to "induced" TPCs, recapitulating the epigenetic landscape and phenotype of native TPCs. We reconstruct a network model that highlights critical interactions and identifies candidate therapeutic targets for eliminating TPCs. Our study establishes the epigenetic basis of a developmental hierarchy in GBM, provides detailed insight into underlying gene regulatory programs, and suggests attendant therapeutic strategies. PAPERCLIP:

摘要

发育命运的决定取决于主转录因子(TFs),它们与顺式调控元件相互作用,指导转录程序。某些恶性肿瘤可能也依赖于类似于正常发育的细胞层次结构,但叠加在潜在的遗传异常之上。在胶质母细胞瘤(GBM)中,一小部分干细胞样肿瘤增殖细胞(TPCs)似乎驱动肿瘤进展并导致治疗耐药,但仍知之甚少。在这里,我们确定了一组核心的神经发育 TF(POU3F2、SOX2、SALL2 和 OLIG2),它们对 GBM 的增殖是必不可少的。这些 TF 协调地结合并激活 TPC 特异性调节元件,足以将分化的 GBM 细胞完全重编程为“诱导”TPCs,重现了 TPCs 的表观遗传景观和表型。我们重建了一个网络模型,突出了关键的相互作用,并确定了消除 TPCs 的候选治疗靶点。我们的研究确立了 GBM 中发育层次的表观遗传基础,深入了解了潜在的基因调控程序,并提出了相应的治疗策略。

相似文献

1
Reconstructing and reprogramming the tumor-propagating potential of glioblastoma stem-like cells.
Cell. 2014 Apr 24;157(3):580-94. doi: 10.1016/j.cell.2014.02.030. Epub 2014 Apr 10.
2
6
Computational identification of specific genes for glioblastoma stem-like cells identity.
Sci Rep. 2018 May 17;8(1):7769. doi: 10.1038/s41598-018-26081-5.
7
Characterization of a FOXG1:TLE1 transcriptional network in glioblastoma-initiating cells.
Mol Oncol. 2018 Jun;12(6):775-787. doi: 10.1002/1878-0261.12168. Epub 2018 Apr 27.
8
Podocalyxin-like protein is expressed in glioblastoma multiforme stem-like cells and is associated with poor outcome.
PLoS One. 2013 Oct 16;8(10):e75945. doi: 10.1371/journal.pone.0075945. eCollection 2013.
9
DNMT-dependent suppression of microRNA regulates the induction of GBM tumor-propagating phenotype by Oct4 and Sox2.
Oncogene. 2015 Jul 23;34(30):3994-4004. doi: 10.1038/onc.2014.334. Epub 2014 Oct 20.

引用本文的文献

2
Deregulating m6A regulators leads to altered RNA biology in glioma cell lines.
bioRxiv. 2025 Aug 19:2024.10.28.620763. doi: 10.1101/2024.10.28.620763.
4
The Pivotal Role of NF-κB in Glioblastoma: Mechanisms of Activation and Therapeutic Implications.
Int J Mol Sci. 2025 Aug 15;26(16):7883. doi: 10.3390/ijms26167883.
5
Deciphering the mechanistic roles of ADARs in cancer pathogenesis, tumor immune evasion, and drug resistance.
Front Immunol. 2025 Aug 7;16:1621585. doi: 10.3389/fimmu.2025.1621585. eCollection 2025.
6
Cell state plasticity in neuroblastoma.
EJC Paediatr Oncol. 2024 Dec;4. doi: 10.1016/j.ejcped.2024.100184. Epub 2024 Aug 2.
7
Cancer stem cells: Bridging microenvironmental interactions and clinical therapy.
Clin Transl Med. 2025 Jul;15(7):e70406. doi: 10.1002/ctm2.70406.
8
Zebrafish models in glioma research: advances in methodologies, mechanistic insights, and therapeutic frontiers.
Front Immunol. 2025 Jun 24;16:1601656. doi: 10.3389/fimmu.2025.1601656. eCollection 2025.
9
Epigenetic Alterations in Glioblastoma Multiforme as Novel Therapeutic Targets: A Scoping Review.
Int J Mol Sci. 2025 Jun 12;26(12):5634. doi: 10.3390/ijms26125634.
10
Isolation and Propagation of Brain Tumor Stem Cells.
Methods Mol Biol. 2025;2944:17-25. doi: 10.1007/978-1-0716-4654-0_2.

本文引用的文献

1
ZFHX4 interacts with the NuRD core member CHD4 and regulates the glioblastoma tumor-initiating cell state.
Cell Rep. 2014 Jan 30;6(2):313-24. doi: 10.1016/j.celrep.2013.12.032. Epub 2014 Jan 16.
2
Locus-specific editing of histone modifications at endogenous enhancers.
Nat Biotechnol. 2013 Dec;31(12):1133-6. doi: 10.1038/nbt.2701. Epub 2013 Sep 8.
4
Chromatin regulator PRC2 is a key regulator of epigenetic plasticity in glioblastoma.
Cancer Res. 2013 Jul 15;73(14):4559-70. doi: 10.1158/0008-5472.CAN-13-0109. Epub 2013 May 29.
5
An aberrant transcription factor network essential for Wnt signaling and stem cell maintenance in glioblastoma.
Cell Rep. 2013 May 30;3(5):1567-79. doi: 10.1016/j.celrep.2013.04.021. Epub 2013 May 23.
6
Phosphorylation of EZH2 activates STAT3 signaling via STAT3 methylation and promotes tumorigenicity of glioblastoma stem-like cells.
Cancer Cell. 2013 Jun 10;23(6):839-52. doi: 10.1016/j.ccr.2013.04.008. Epub 2013 May 16.
7
Epigenetic reprogramming in cancer.
Science. 2013 Mar 29;339(6127):1567-70. doi: 10.1126/science.1230184.
9
Transcriptional regulation and its misregulation in disease.
Cell. 2013 Mar 14;152(6):1237-51. doi: 10.1016/j.cell.2013.02.014.
10
SOX2 co-occupies distal enhancer elements with distinct POU factors in ESCs and NPCs to specify cell state.
PLoS Genet. 2013;9(2):e1003288. doi: 10.1371/journal.pgen.1003288. Epub 2013 Feb 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验