Suppr超能文献

“计算机表达分析”,一种新的 PathoPlant 网络工具,用于识别与特定顺式调控序列相关的非生物和生物胁迫条件。

'In silico expression analysis', a novel PathoPlant web tool to identify abiotic and biotic stress conditions associated with specific cis-regulatory sequences.

机构信息

Institut für Genetik, Technische Universität Braunschweig, Spielmannstr 7, 38106 Braunschweig, Germany.

出版信息

Database (Oxford). 2014 Apr 10;2014(0):bau030. doi: 10.1093/database/bau030. Print 2014.

Abstract

Using bioinformatics, putative cis-regulatory sequences can be easily identified using pattern recognition programs on promoters of specific gene sets. The abundance of predicted cis-sequences is a major challenge to associate these sequences with a possible function in gene expression regulation. To identify a possible function of the predicted cis-sequences, a novel web tool designated 'in silico expression analysis' was developed that correlates submitted cis-sequences with gene expression data from Arabidopsis thaliana. The web tool identifies the A. thaliana genes harbouring the sequence in a defined promoter region and compares the expression of these genes with microarray data. The result is a hierarchy of abiotic and biotic stress conditions to which these genes are most likely responsive. When testing the performance of the web tool, known cis-regulatory sequences were submitted to the 'in silico expression analysis' resulting in the correct identification of the associated stress conditions. When using a recently identified novel elicitor-responsive sequence, a WT-box (CGACTTTT), the 'in silico expression analysis' predicts that genes harbouring this sequence in their promoter are most likely Botrytis cinerea induced. Consistent with this prediction, the strongest induction of a reporter gene harbouring this sequence in the promoter is observed with B. cinerea in transgenic A. thaliana. DATABASE URL: http://www.pathoplant.de/expression_analysis.php.

摘要

使用生物信息学,可以使用特定基因集启动子上的模式识别程序轻松识别推定的顺式调控序列。预测的顺式序列的丰富性是将这些序列与基因表达调控中的可能功能相关联的主要挑战。为了确定预测的顺式序列的可能功能,开发了一种名为“计算机表达分析”的新型网络工具,该工具将提交的顺式序列与拟南芥的基因表达数据相关联。该网络工具确定了在定义的启动子区域中包含该序列的拟南芥基因,并将这些基因的表达与微阵列数据进行比较。结果是一个非生物和生物胁迫条件的层次结构,这些基因最有可能对此作出响应。在测试网络工具的性能时,将已知的顺式调控序列提交给“计算机表达分析”,从而正确识别出相关的胁迫条件。当使用最近鉴定的新型诱导剂响应序列(WT 框[CGACTTTT])时,“计算机表达分析”预测在启动子中包含该序列的基因最有可能对灰葡萄孢菌诱导作出响应。与这一预测一致,在含有该序列的启动子中含有该序列的报告基因的最强诱导是在转基因拟南芥中观察到的灰葡萄孢菌。数据库 URL:http://www.pathoplant.de/expression_analysis.php。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/287a/3983564/a1156ba9860f/bau030f1p.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验