Kolodziejczyk Karolina, Parsons Matthew P, Southwell Amber L, Hayden Michael R, Raymond Lynn A
Department of Psychiatry, Brain Research Centre, University of British Columbia, Vancouver, British Columbia, Canada.
Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada.
PLoS One. 2014 Apr 11;9(4):e94562. doi: 10.1371/journal.pone.0094562. eCollection 2014.
Huntington disease (HD) is a fatal neurodegenerative disorder caused by a CAG repeat expansion in the gene (HTT) encoding the huntingtin protein (HTT). This mutation leads to multiple cellular and synaptic alterations that are mimicked in many current HD animal models. However, the most commonly used, well-characterized HD models do not accurately reproduce the genetics of human disease. Recently, a new 'humanized' mouse model, termed Hu97/18, has been developed that genetically recapitulates human HD, including two human HTT alleles, no mouse Hdh alleles and heterozygosity of the HD mutation. Previously, behavioral and neuropathological testing in Hu97/18 mice revealed many features of HD, yet no electrophysiological measures were employed to investigate possible synaptic alterations. Here, we describe electrophysiological changes in the striatum and hippocampus of the Hu97/18 mice. At 9 months of age, a stage when cognitive deficits are fully developed and motor dysfunction is also evident, Hu97/18 striatal spiny projection neurons (SPNs) exhibited small changes in membrane properties and lower amplitude and frequency of spontaneous excitatory postsynaptic currents (sEPSCs); however, release probability from presynaptic terminals was unaltered. Strikingly, these mice also exhibited a profound deficiency in long-term potentiation (LTP) at CA3-to-CA1 synapses. In contrast, at 6 months of age we found only subtle alterations in SPN synaptic transmission, while 3-month old animals did not display any electrophysiologically detectable changes in the striatum and CA1 LTP was intact. Together, these data reveal robust, progressive deficits in synaptic function and plasticity in Hu97/18 mice, consistent with previously reported behavioral abnormalities, and suggest an optimal age (9 months) for future electrophysiological assessment in preclinical studies of HD.
亨廷顿舞蹈症(HD)是一种致命的神经退行性疾病,由编码亨廷顿蛋白(HTT)的基因(HTT)中的CAG重复序列扩增引起。这种突变导致多种细胞和突触改变,目前许多HD动物模型都能模拟这些改变。然而,最常用、特征明确的HD模型并不能准确再现人类疾病的遗传学特征。最近,一种新的“人源化”小鼠模型,称为Hu97/18,已经被开发出来,它在基因上概括了人类HD,包括两个人类HTT等位基因、没有小鼠Hdh等位基因以及HD突变的杂合性。此前,对Hu97/18小鼠的行为和神经病理学测试揭示了HD的许多特征,但没有采用电生理测量来研究可能的突触改变。在这里,我们描述了Hu97/18小鼠纹状体和海马体中的电生理变化。在9个月大时,即认知缺陷完全发展且运动功能障碍也很明显的阶段,Hu97/18纹状体棘状投射神经元(SPN)的膜特性有微小变化,自发兴奋性突触后电流(sEPSC)的幅度和频率较低;然而,突触前终末的释放概率未改变。令人惊讶的是,这些小鼠在CA3到CA1突触处的长时程增强(LTP)也存在严重缺陷。相比之下,在6个月大时,我们发现SPN突触传递只有细微改变,而3个月大的动物在纹状体中没有显示出任何电生理可检测到的变化,并且CA1的LTP是完整的。总之,这些数据揭示了Hu97/18小鼠突触功能和可塑性存在强大的、渐进性的缺陷,与先前报道的行为异常一致,并表明在HD临床前研究中进行未来电生理评估的最佳年龄为(9个月)。