Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY 13853.
Proc Natl Acad Sci U S A. 2014 Apr 29;111(17):6503-8. doi: 10.1073/pnas.1318975111. Epub 2014 Apr 11.
Aluminum (Al) toxicity is a major constraint for crop production on acid soils which compose ∼ 40% of arable land in the tropics and subtropics. Rice is the most Al-tolerant cereal crop and offers a good model for identifying Al tolerance genes and mechanisms. Here we investigated natural variation in the rice Nramp aluminum transporter (NRAT1) gene encoding a root plasma membrane Al uptake transporter previously hypothesized to underlie a unique Al tolerance mechanism. DNA sequence variation in the NRAT1 coding and regulatory regions was associated with changes in NRAT1 expression and NRAT1 Al transport properties. These sequence changes resulted in significant differences in Al tolerance that were found to be associated with changes in the Al content of root cell wall and cell sap in 24 representative rice lines from a rice association panel. Expression of the tolerant OsNRAT1 allele in yeast resulted in higher Al uptake than did the sensitive allele and conferred greater Al tolerance when expressed in transgenic Arabidopsis. These findings indicate that NRAT1 plays an important role in rice Al tolerance by reducing the level of toxic Al in the root cell wall and transporting Al into the root cell, where it is ultimately sequestered in the vacuole. Given its ability to enhance Al tolerance in rice and Arabidopsis, this work suggests that the NRAT1 gene or its orthologs may be useful tools for enhancing Al tolerance in a wide range of plant species.
铝(Al)毒性是酸性土壤上作物生产的主要限制因素,酸性土壤约占热带和亚热带可耕地的 40%。水稻是最耐铝的谷类作物,为鉴定耐铝基因和机制提供了良好的模式。在这里,我们研究了先前假设为独特耐铝机制基础的水稻 Nramp 铝转运蛋白(NRAT1)基因的自然变异。NRAT1 编码区和调控区的 DNA 序列变异与 NRAT1 表达和 NRAT1 铝转运特性的变化有关。这些序列变化导致了铝耐性的显著差异,在来自水稻关联群体的 24 个代表性水稻品系中,发现这些差异与根细胞壁和细胞液中铝含量的变化有关。在酵母中表达耐铝 OsNRAT1 等位基因导致更高的铝摄取量,比敏感等位基因表达时的摄取量更高,并且在转化的拟南芥中表达时赋予更高的铝耐性。这些发现表明,NRAT1 通过降低根细胞壁中有毒 Al 的水平并将 Al 转运到根细胞中,从而在水稻的耐铝性中发挥重要作用,最终将 Al 隔离在液泡中。鉴于其在水稻和拟南芥中增强耐铝性的能力,这项工作表明 NRAT1 基因或其同源基因可能是在广泛的植物物种中增强耐铝性的有用工具。