IEEE Trans Image Process. 2014 Jun;23(6):2557-68. doi: 10.1109/TIP.2014.2316640. Epub 2014 Apr 10.
Effective characterization of texture images requires exploiting multiple visual cues from the image appearance. The local binary pattern (LBP) and its variants achieve great success in texture description. However, because the LBP(-like) feature is an index of discrete patterns rather than a numerical feature, it is difficult to combine the LBP(-like) feature with other discriminative ones by a compact descriptor. To overcome the problem derived from the nonnumerical constraint of the LBP, this paper proposes a numerical variant accordingly, named the LBP difference (LBPD). The LBPD characterizes the extent to which one LBP varies from the average local structure of an image region of interest. It is simple, rotation invariant, and computationally efficient. To achieve enhanced performance, we combine the LBPD with other discriminative cues by a covariance matrix. The proposed descriptor, termed the covariance and LBPD descriptor (COV-LBPD), is able to capture the intrinsic correlation between the LBPD and other features in a compact manner. Experimental results show that the COV-LBPD achieves promising results on publicly available data sets.
有效描述纹理图像需要利用图像外观的多种视觉线索。局部二值模式(LBP)及其变体在纹理描述中取得了巨大的成功。然而,由于 LBP(类)特征是离散模式的索引,而不是数值特征,因此很难通过紧凑的描述符将 LBP(类)特征与其他有区别的特征结合起来。为了克服 LBP 带来的源于非数值约束的问题,本文提出了一种相应的数值变体,称为 LBP 差分(LBPD)。LBPD 描述了一个 LBP 相对于感兴趣图像区域的平均局部结构的变化程度。它简单、旋转不变且计算效率高。为了获得更好的性能,我们通过协方差矩阵将 LBPD 与其他有区别的线索相结合。所提出的描述符,称为协方差和 LBPD 描述符(COV-LBPD),能够以紧凑的方式捕获 LBPD 和其他特征之间的内在相关性。实验结果表明,COV-LBPD 在公开可用的数据集上取得了有希望的结果。