Suppr超能文献

病例对照研究中聚集性罕见因果变异的关联检验。

Association testing of clustered rare causal variants in case-control studies.

作者信息

Lin Wan-Yu

机构信息

Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan.

出版信息

PLoS One. 2014 Apr 15;9(4):e94337. doi: 10.1371/journal.pone.0094337. eCollection 2014.

Abstract

Biological evidence suggests that multiple causal variants in a gene may cluster physically. Variants within the same protein functional domain or gene regulatory element would locate in close proximity on the DNA sequence. However, spatial information of variants is usually not used in current rare variant association analyses. We here propose a clustering method (abbreviated as "CLUSTER"), which is extended from the adaptive combination of P-values. Our method combines the association signals of variants that are more likely to be causal. Furthermore, the statistic incorporates the spatial information of variants. With extensive simulations, we show that our method outperforms several commonly-used methods in many scenarios. To demonstrate its use in real data analyses, we also apply this CLUSTER test to the Dallas Heart Study data. CLUSTER is among the best methods when the effects of causal variants are all in the same direction. As variants located in close proximity are more likely to have similar impact on disease risk, CLUSTER is recommended for association testing of clustered rare causal variants in case-control studies.

摘要

生物学证据表明,基因中的多个致病变异可能在物理上聚集。同一蛋白质功能域或基因调控元件内的变异在DNA序列上会紧密相邻。然而,当前的罕见变异关联分析通常不使用变异的空间信息。我们在此提出一种聚类方法(简称为“CLUSTER”),它是从P值的自适应组合扩展而来的。我们的方法结合了更可能具有因果关系的变异的关联信号。此外,该统计量纳入了变异的空间信息。通过广泛的模拟,我们表明我们的方法在许多情况下优于几种常用方法。为了证明其在实际数据分析中的应用,我们还将此CLUSTER检验应用于达拉斯心脏研究数据。当致病变异的效应都在同一方向时,CLUSTER是最佳方法之一。由于紧密相邻的变异对疾病风险的影响更可能相似,因此建议在病例对照研究中对聚集的罕见致病变异进行关联检验时使用CLUSTER。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/302b/3988195/0dde1246cdaf/pone.0094337.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验