Department of Statistics, North Carolina State University, Raleigh, North Carolina, United States of America.
Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America.
PLoS Comput Biol. 2019 Feb 19;15(2):e1006722. doi: 10.1371/journal.pcbi.1006722. eCollection 2019 Feb.
Rare variants are of increasing interest to genetic association studies because of their etiological contributions to human complex diseases. Due to the rarity of the mutant events, rare variants are routinely analyzed on an aggregate level. While aggregation analyses improve the detection of global-level signal, they are not able to pinpoint causal variants within a variant set. To perform inference on a localized level, additional information, e.g., biological annotation, is often needed to boost the information content of a rare variant. Following the observation that important variants are likely to cluster together on functional domains, we propose a protein structure guided local test (POINT) to provide variant-specific association information using structure-guided aggregation of signal. Constructed under a kernel machine framework, POINT performs local association testing by borrowing information from neighboring variants in the 3-dimensional protein space in a data-adaptive fashion. Besides merely providing a list of promising variants, POINT assigns each variant a p-value to permit variant ranking and prioritization. We assess the selection performance of POINT using simulations and illustrate how it can be used to prioritize individual rare variants in PCSK9, ANGPTL4 and CETP in the Action to Control Cardiovascular Risk in Diabetes (ACCORD) clinical trial data.
稀有变异体因其对人类复杂疾病的病因贡献而引起了遗传关联研究的兴趣。由于突变事件的稀有性,稀有变异体通常在总体水平上进行分析。虽然聚合分析提高了全局信号的检测能力,但它们无法确定变异集中的因果变异体。为了在局部水平上进行推断,通常需要额外的信息,例如生物学注释,以提高稀有变异体的信息量。鉴于重要的变异体很可能在功能域上聚集在一起的观察结果,我们提出了一种基于蛋白质结构的局部检验(POINT)方法,通过结构引导的信号聚合来提供特定于变异体的关联信息。POINT 是在核机器框架下构建的,通过自适应地从三维蛋白质空间中的相邻变异体中获取信息来进行局部关联测试。除了提供有希望的变异体列表外,POINT 还为每个变异体分配一个 p 值,以允许对变异体进行排名和优先级排序。我们使用模拟评估了 POINT 的选择性能,并说明了如何在 ACCORD 临床试验数据中使用它对 PCSK9、ANGPTL4 和 CETP 中的个体稀有变异体进行优先级排序。