Lampert Angelika, Eberhardt Mirjam, Waxman Stephen G
Institute of Physiology, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany,
Handb Exp Pharmacol. 2014;221:91-110. doi: 10.1007/978-3-642-41588-3_5.
Mutations in voltage-gated sodium channels, especially Nav1.7, can cause the genetic pain syndromes inherited erythromelalgia, small fiber neuropathy, paroxysmal extreme pain disorder, and chronic insensitivity to pain. Functional analysis of these mutations offers the possibility of understanding the potential pathomechanisms of these disease patterns and also may help to explicate the molecular mechanisms underlying pain in normal conditions. The mutations are distributed over the whole channel protein, but nevertheless induce similar changes for each pain syndrome. In this review we focus on their impact on sodium channel gating, which may be conferred via modulation of (1) conformation (affecting all gating characteristics); (2) the amount of voltage-sensing charges (affecting mainly activation); (3) interaction within the protein (e.g., binding of the inactivation linker); and (4) interaction with other proteins (e.g., for generation of resurgent currents). Understanding the molecular basis for each gating mode and its impact on cellular excitability and nociception in each disease type may provide a basis for development of more specific and effective therapeutic tools.
电压门控钠通道的突变,尤其是Nav1.7的突变,可导致遗传性疼痛综合征,如遗传性红斑性肢痛症、小纤维神经病变、阵发性剧痛障碍和慢性痛觉缺失。对这些突变进行功能分析,有助于理解这些疾病模式的潜在发病机制,也可能有助于阐明正常情况下疼痛的分子机制。这些突变分布于整个通道蛋白,但每种疼痛综合征都会引发相似的变化。在本综述中,我们重点关注它们对钠通道门控的影响,这种影响可能通过以下方式介导:(1)构象调节(影响所有门控特性);(2)电压感应电荷数量调节(主要影响激活);(3)蛋白内部相互作用(如失活连接子的结合);(4)与其他蛋白的相互作用(如产生复苏电流)。了解每种门控模式的分子基础及其对每种疾病类型中细胞兴奋性和痛觉感受的影响,可能为开发更具特异性和有效性的治疗手段提供依据。