Institute for Analysis and Scientific Computing, Vienna University of Technology, 1040, Vienna, Austria.
J Math Neurosci. 2014 Apr 17;4(1):1. doi: 10.1186/2190-8567-4-1.
We study the effect of additive noise on integro-differential neural field equations. In particular, we analyze an Amari-type model driven by a Q-Wiener process, and focus on noise-induced transitions and escape. We argue that proving a sharp Kramers' law for neural fields poses substantial difficulties, but that one may transfer techniques from stochastic partial differential equations to establish a large deviation principle (LDP). Then we demonstrate that an efficient finite-dimensional approximation of the stochastic neural field equation can be achieved using a Galerkin method and that the resulting finite-dimensional rate function for the LDP can have a multiscale structure in certain cases. These results form the starting point for an efficient practical computation of the LDP. Our approach also provides the technical basis for further rigorous study of noise-induced transitions in neural fields based on Galerkin approximations.Mathematics Subject Classification (2000): 60F10, 60H15, 65M60, 92C20.
我们研究了加性噪声对积分微分神经场方程的影响。具体来说,我们分析了由 Q-Wiener 过程驱动的 Amari 型模型,并关注噪声诱导的跃迁和逃逸。我们认为,证明神经场的 sharp Kramers' law 存在很大的困难,但可以从随机偏微分方程的技术转移到建立大偏差原理 (LDP)。然后,我们证明了使用 Galerkin 方法可以实现随机神经场方程的有效有限维逼近,并且在某些情况下,所得 LDP 的有限维速率函数可能具有多尺度结构。这些结果为 LDP 的有效实际计算提供了起点。我们的方法还为基于 Galerkin 逼近的神经场中噪声诱导跃迁的进一步严格研究提供了技术基础。
数学主题分类(2000):60F10、60H15、65M60、92C20。