Suppr超能文献

非局部随机神经场的大偏差。

Large deviations for nonlocal stochastic neural fields.

机构信息

Institute for Analysis and Scientific Computing, Vienna University of Technology, 1040, Vienna, Austria.

出版信息

J Math Neurosci. 2014 Apr 17;4(1):1. doi: 10.1186/2190-8567-4-1.

Abstract

We study the effect of additive noise on integro-differential neural field equations. In particular, we analyze an Amari-type model driven by a Q-Wiener process, and focus on noise-induced transitions and escape. We argue that proving a sharp Kramers' law for neural fields poses substantial difficulties, but that one may transfer techniques from stochastic partial differential equations to establish a large deviation principle (LDP). Then we demonstrate that an efficient finite-dimensional approximation of the stochastic neural field equation can be achieved using a Galerkin method and that the resulting finite-dimensional rate function for the LDP can have a multiscale structure in certain cases. These results form the starting point for an efficient practical computation of the LDP. Our approach also provides the technical basis for further rigorous study of noise-induced transitions in neural fields based on Galerkin approximations.Mathematics Subject Classification (2000): 60F10, 60H15, 65M60, 92C20.

摘要

我们研究了加性噪声对积分微分神经场方程的影响。具体来说,我们分析了由 Q-Wiener 过程驱动的 Amari 型模型,并关注噪声诱导的跃迁和逃逸。我们认为,证明神经场的 sharp Kramers' law 存在很大的困难,但可以从随机偏微分方程的技术转移到建立大偏差原理 (LDP)。然后,我们证明了使用 Galerkin 方法可以实现随机神经场方程的有效有限维逼近,并且在某些情况下,所得 LDP 的有限维速率函数可能具有多尺度结构。这些结果为 LDP 的有效实际计算提供了起点。我们的方法还为基于 Galerkin 逼近的神经场中噪声诱导跃迁的进一步严格研究提供了技术基础。

数学主题分类(2000):60F10、60H15、65M60、92C20。

相似文献

1
Large deviations for nonlocal stochastic neural fields.非局部随机神经场的大偏差。
J Math Neurosci. 2014 Apr 17;4(1):1. doi: 10.1186/2190-8567-4-1.
5
A gradient flow formulation for the stochastic Amari neural field model.
J Math Biol. 2019 Sep;79(4):1227-1252. doi: 10.1007/s00285-019-01393-w. Epub 2019 Jun 18.
10
Master equations and the theory of stochastic path integrals.主方程和随机路径积分理论。
Rep Prog Phys. 2017 Apr;80(4):046601. doi: 10.1088/1361-6633/aa5ae2.

引用本文的文献

1
A gradient flow formulation for the stochastic Amari neural field model.
J Math Biol. 2019 Sep;79(4):1227-1252. doi: 10.1007/s00285-019-01393-w. Epub 2019 Jun 18.
3
Neural Field Models with Threshold Noise.具有阈值噪声的神经场模型
J Math Neurosci. 2016 Dec;6(1):3. doi: 10.1186/s13408-016-0035-z. Epub 2016 Mar 2.
5
Stochastic neural field equations: a rigorous footing.随机神经场方程:一个严格的基础。
J Math Biol. 2015 Aug;71(2):259-300. doi: 10.1007/s00285-014-0807-6. Epub 2014 Jul 29.

本文引用的文献

2
5
Early-warning signals for critical transitions.关键转变的早期预警信号。
Nature. 2009 Sep 3;461(7260):53-9. doi: 10.1038/nature08227.
6
Stochastic dynamics of a finite-size spiking neural network.有限规模脉冲神经网络的随机动力学
Neural Comput. 2007 Dec;19(12):3262-92. doi: 10.1162/neco.2007.19.12.3262.
8
Random fluctuations of the firing rate function in a continuum neural field model.连续神经场模型中发放率函数的随机波动。
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Apr;75(4 Pt 1):041913. doi: 10.1103/PhysRevE.75.041913. Epub 2007 Apr 25.
9
Waves, bumps, and patterns in neural field theories.神经场理论中的波、凸起和模式。
Biol Cybern. 2005 Aug;93(2):91-108. doi: 10.1007/s00422-005-0574-y. Epub 2005 Jul 30.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验