Suppr超能文献

癫痫发作中的标度效应和时空多层次动力学。

Scaling effects and spatio-temporal multilevel dynamics in epileptic seizures.

机构信息

Max Planck Institute for the Physics of Complex Systems, Dresden, Germany.

出版信息

PLoS One. 2012;7(2):e30371. doi: 10.1371/journal.pone.0030371. Epub 2012 Feb 17.

Abstract

Epileptic seizures are one of the most well-known dysfunctions of the nervous system. During a seizure, a highly synchronized behavior of neural activity is observed that can cause symptoms ranging from mild sensual malfunctions to the complete loss of body control. In this paper, we aim to contribute towards a better understanding of the dynamical systems phenomena that cause seizures. Based on data analysis and modelling, seizure dynamics can be identified to possess multiple spatial scales and on each spatial scale also multiple time scales. At each scale, we reach several novel insights. On the smallest spatial scale we consider single model neurons and investigate early-warning signs of spiking. This introduces the theory of critical transitions to excitable systems. For clusters of neurons (or neuronal regions) we use patient data and find oscillatory behavior and new scaling laws near the seizure onset. These scalings lead to substantiate the conjecture obtained from mean-field models that a Hopf bifurcation could be involved near seizure onset. On the largest spatial scale we introduce a measure based on phase-locking intervals and wavelets into seizure modelling. It is used to resolve synchronization between different regions in the brain and identifies time-shifted scaling laws at different wavelet scales. We also compare our wavelet-based multiscale approach with maximum linear cross-correlation and mean-phase coherence measures.

摘要

癫痫发作是神经系统最著名的功能障碍之一。在发作期间,观察到神经活动的高度同步行为,可能导致从轻度感官功能障碍到完全失去身体控制的症状。在本文中,我们旨在为理解导致癫痫发作的动力系统现象做出贡献。基于数据分析和建模,可以确定癫痫发作动力学具有多个空间尺度,并且在每个空间尺度上也具有多个时间尺度。在每个尺度上,我们都有了一些新的认识。在最小的空间尺度上,我们考虑单个模型神经元,并研究尖峰的预警信号。这将临界相变理论引入到了可激发系统中。对于神经元簇(或神经元区域),我们使用患者数据并在癫痫发作开始时发现了振荡行为和新的标度律。这些标度律证实了从平均场模型中得到的假设,即在癫痫发作开始时可能涉及到 Hopf 分岔。在最大的空间尺度上,我们引入了一种基于锁相间隔和小波的度量方法到癫痫发作建模中。它用于解析大脑不同区域之间的同步,并在不同的小波尺度上识别时间移位的标度律。我们还将基于小波的多尺度方法与最大线性互相关和平均相位相干度测量进行了比较。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a23/3281841/76c3f102d082/pone.0030371.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验