Department of Physiology and Biophysics and Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA.
Department of Physiology and Biophysics and Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA.
Neuron. 2014 Apr 16;82(2):460-73. doi: 10.1016/j.neuron.2014.02.037.
Components of neural circuits are often repurposed so that the same biological hardware can be used for distinct computations. This flexibility in circuit operation is required to account for the changes in sensory computations that accompany changes in input signals. Yet we know little about how such changes in circuit operation are implemented. Here we show that a single retinal ganglion cell performs a different computation in dim light--averaging contrast within its receptive field--than in brighter light, when the cell becomes sensitive to fine spatial detail. This computational change depends on interactions between two parallel circuits that control the ganglion cell's excitatory synaptic inputs. Specifically, steady-state interactions through dendro-axonal gap junctions control rectification of the synapses providing excitatory input to the ganglion cell. These findings provide a clear example of how a simple synaptic mechanism can repurpose a neural circuit to perform diverse computations.
神经回路的组成部分通常被重新利用,以便相同的生物硬件可以用于不同的计算。这种回路操作的灵活性是必需的,以解释伴随输入信号变化的感觉计算的变化。然而,我们对这种回路操作的变化是如何实现的知之甚少。在这里,我们表明,当单个视网膜神经节细胞对精细空间细节变得敏感时,它在暗光下(在其感受野内平均对比度)执行的计算与在更亮的光下不同。这种计算变化取决于控制神经节细胞兴奋性突触输入的两个并行回路之间的相互作用。具体来说,通过树突轴突间隙连接的稳态相互作用控制为神经节细胞提供兴奋性输入的突触的整流。这些发现提供了一个清晰的例子,说明如何通过简单的突触机制来重新利用神经回路来执行不同的计算。