Iturrate I, Chavarriaga R, Montesano L, Minguez J, Millán JdR
Instituto de Investigación en Ingeniería de Aragón (I3A), Edificio I+D+i, Mariano Esquillor, E-50018 Zaragoza, Spain. Departamento de Informática e Ingeniería de Sistemas (DIIS), Universidad de Zaragoza, Maria de Luna 1, E-50018 Zaragoza, Spain.
J Neural Eng. 2014 Jun;11(3):036005. doi: 10.1088/1741-2560/11/3/036005. Epub 2014 Apr 17.
A fundamental issue in EEG event-related potentials (ERPs) studies is the amount of data required to have an accurate ERP model. This also impacts the time required to train a classifier for a brain-computer interface (BCI). This issue is mainly due to the poor signal-to-noise ratio and the large fluctuations of the EEG caused by several sources of variability. One of these sources is directly related to the experimental protocol or application designed, and may affect the amplitude or latency of ERPs. This usually prevents BCI classifiers from generalizing among different experimental protocols. In this paper, we analyze the effect of the amplitude and the latency variations among different experimental protocols based on the same type of ERP.
We present a method to analyze and compensate for the latency variations in BCI applications. The algorithm has been tested on two widely used ERPs (P300 and observation error potentials), in three experimental protocols in each case. We report the ERP analysis and single-trial classification.
The results obtained show that the designed experimental protocols significantly affect the latency of the recorded potentials but not the amplitudes.
These results show how the use of latency-corrected data can be used to generalize the BCIs, reducing the calibration time when facing a new experimental protocol.
脑电图事件相关电位(ERP)研究中的一个基本问题是获得准确ERP模型所需的数据量。这也会影响为脑机接口(BCI)训练分类器所需的时间。这个问题主要是由于信噪比低以及脑电图由多种变异性来源导致的大幅波动。其中一个来源与所设计的实验方案或应用直接相关,可能会影响ERP的幅度或潜伏期。这通常会阻碍BCI分类器在不同实验方案之间的泛化。在本文中,我们基于同一类型的ERP分析不同实验方案之间幅度和潜伏期变化的影响。
我们提出一种分析和补偿BCI应用中潜伏期变化的方法。该算法已在两种广泛使用的ERP(P300和观察误差电位)上进行了测试,每种情况均采用了三种实验方案。我们报告了ERP分析和单次试验分类。
所得结果表明,所设计的实验方案显著影响记录电位的潜伏期,但不影响幅度。
这些结果表明,使用潜伏期校正后的数据可用于实现BCI的泛化,减少面对新实验方案时的校准时间。