Iwane Fumiaki, Sobolewski Aleksander, Chavarriaga Ricardo, Millán José Del R
Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
Department of Neurology, The University of Texas at Austin, Austin, TX 78712, USA.
iScience. 2023 Aug 2;26(9):107524. doi: 10.1016/j.isci.2023.107524. eCollection 2023 Sep 15.
Error-related potentials (ErrPs) are a prominent electroencephalogram (EEG) correlate of performance monitoring, and so crucial for learning and adapting our behavior. It is poorly understood whether ErrPs encode further information beyond error awareness. We report an experiment with sixteen participants over three sessions in which occasional visual rotations of varying magnitude occurred during a cursor reaching task. We designed a brain-computer interface (BCI) to detect ErrPs that provided real-time feedback. The individual ErrP-BCI decoders exhibited good transfer across sessions and scalability over the magnitude of errors. A non-linear relationship between the ErrP-BCI output and the magnitude of errors predicts individual perceptual thresholds to detect errors. We also reveal theta-gamma oscillatory coupling that co-varied with the magnitude of the required adjustment. Our findings open new avenues to probe and extend current theories of performance monitoring by incorporating continuous human interaction tasks and analysis of the ErrP complex rather than individual peaks.
错误相关电位(ErrPs)是脑电图(EEG)中与绩效监测密切相关的成分,对学习和调整我们的行为至关重要。目前对于ErrPs是否编码了超出错误意识的更多信息仍知之甚少。我们报告了一项针对16名参与者、分三个阶段进行的实验,在光标到达任务期间偶尔会出现不同幅度的视觉旋转。我们设计了一种脑机接口(BCI)来检测ErrPs,并提供实时反馈。个体ErrP-BCI解码器在不同阶段表现出良好的迁移性,并且随着错误幅度的增加具有可扩展性。ErrP-BCI输出与错误幅度之间的非线性关系预测了个体检测错误的感知阈值。我们还揭示了与所需调整幅度共同变化的θ-γ振荡耦合。我们的研究结果通过纳入连续的人机交互任务和对ErrP复合体而非单个峰值的分析,为探索和扩展当前的绩效监测理论开辟了新途径。