Rungger-Brändle E, Achtstätter T, Franke W W
Laboratory of Electron Microscopy, University of Geneva, Switzerland.
J Cell Biol. 1989 Aug;109(2):705-16. doi: 10.1083/jcb.109.2.705.
In higher vertebrates the cytoskeleton of glial cells, notably astrocytes, is characterized (a) by masses of intermediate filaments (IFs) that contain the hallmark protein of glial differentiation, the glial filament protein (GFP); and (b) by the absence of cytokeratin IFs and IF-anchoring membrane domains of the desmosome type. Here we report that in certain amphibian species (Xenopus laevis, Rana ridibunda, and Pleurodeles waltlii) the astrocytes of the optic nerve contain a completely different type of cytoskeleton. In immunofluorescence microscopy using antibodies specific for different IF and desmosomal proteins, the astrocytes of this nerve are positive for cytokeratins and desmoplakins; by electron microscopy these reactions could be correlated to IF bundles and desmosomes. By gel electrophoresis of cytoskeletal proteins, combined with immunoblotting, we demonstrate the cytokeratinous nature of the major IF proteins of these astroglial cells, comprising at least three major cytokeratins. In this tissue we have not detected a major IF protein that could correspond to GFP. In contrast, cytokeratin IFs and desmosomes have not been detected in the glial cells of brain and spinal cord or in certain peripheral nerves, such as the sciatic nerve. These results provide an example of the formation of a cytokeratin cytoskeleton in the context of a nonepithelial differentiation program. They further show that glial differentiation and functions, commonly correlated with the formation of GFP filaments, are not necessarily dependent on GFP but can also be achieved with structures typical of epithelial differentiation; i.e., cytokeratin IFs and desmosomes. We discuss the cytoskeletal differences of glial cells in different kinds of nerves in the same animal, with special emphasis on the optic nerve of lower vertebrates as a widely studied model system of glial development and nerve regeneration.
在高等脊椎动物中,神经胶质细胞(尤其是星形胶质细胞)的细胞骨架具有以下特征:(a) 存在大量中间丝(IFs),其中含有神经胶质分化的标志性蛋白——神经胶质丝蛋白(GFP);(b) 不存在细胞角蛋白中间丝和桥粒类型的中间丝锚定膜结构域。在此,我们报告在某些两栖类物种(非洲爪蟾、食用蛙和疣螈)中,视神经的星形胶质细胞含有一种完全不同类型的细胞骨架。在使用针对不同中间丝和桥粒蛋白的特异性抗体进行免疫荧光显微镜观察时,该神经的星形胶质细胞对细胞角蛋白和桥粒斑蛋白呈阳性反应;通过电子显微镜观察,这些反应可与中间丝束和桥粒相关联。通过对细胞骨架蛋白进行凝胶电泳并结合免疫印迹分析,我们证实了这些星形胶质细胞主要中间丝蛋白的细胞角蛋白性质,其中至少包括三种主要的细胞角蛋白。在该组织中,我们未检测到与GFP相对应的主要中间丝蛋白。相反,在脑和脊髓的神经胶质细胞或某些外周神经(如坐骨神经)中未检测到细胞角蛋白中间丝和桥粒。这些结果提供了一个在非上皮分化程序背景下形成细胞角蛋白细胞骨架的例子。它们进一步表明,通常与GFP丝形成相关的神经胶质分化和功能不一定依赖于GFP,也可以通过上皮分化的典型结构来实现,即细胞角蛋白中间丝和桥粒。我们讨论了同一动物不同种类神经中神经胶质细胞的细胞骨架差异,特别强调了低等脊椎动物的视神经作为一个广泛研究的神经胶质发育和神经再生模型系统。