Wang Yanyan, Lei Ying, Li Jing, Gu Li, Yuan Hongyan, Xiao Dan
College of Chemical Engineering and ‡College of Chemistry, Sichuan University , 29 Wangjiang Road, Chengdu 610064, People's Republic of China.
ACS Appl Mater Interfaces. 2014 May 14;6(9):6739-47. doi: 10.1021/am500464n. Epub 2014 May 1.
A 3D-nanonet structured cobalt-basic-carbonate precursor has been obtained by a facile, low cost and eco-friendly route under ambient temperature and pressure. After calcination in air, the as-prepared precursor was converted to a 3D-nanonet hollow structured Co3O4 with its original frame structure almost preserved. Encouragingly, by alternating experimental parameters (Table S1 in the Supporting Information ), such as concentration of the starting reagents and calcination temperature, we got the optimized condition for the final product with desirable electrochemical performance (Figure S1 in the Supporting Information ). The pseudocapacitive properties of the obtained Co3O4 were evaluated by cyclic voltammetry (CV), galvanostatic charge-discharge measurement and electrochemical impedance spectroscopy in 6.0 M KOH solution. At different scan rates of 5, 10, 20, and 30 mV s(-1), the corresponding specific capacitances were 820, 755, 693, and 656 F g(-1), respectively. The material also exhibited superior charge-discharge stability and maintained 90.2% of its initial capacitance after 1000 continuous charge-discharge cycles at a current density of 5 A g(-1). From a broad view, our research and the outstanding results not only present a feasible access to nanostructured Co3O4 but also remind us of paying more attention to the simple synthetic methods without complex processes and sophisticated instruments.
通过一种简便、低成本且环保的方法,在常温常压下获得了一种三维纳米网结构的碱式碳酸钴前驱体。在空气中煅烧后,所制备的前驱体转变为三维纳米网空心结构的Co3O4,其原始框架结构几乎得以保留。令人鼓舞的是,通过改变实验参数(支持信息中的表S1),如起始试剂的浓度和煅烧温度,我们得到了具有理想电化学性能的最终产物的优化条件(支持信息中的图S1)。在6.0 M KOH溶液中,通过循环伏安法(CV)、恒电流充放电测量和电化学阻抗谱对所获得的Co3O4的赝电容性能进行了评估。在5、10、20和30 mV s(-1)的不同扫描速率下,相应的比电容分别为820、755、693和656 F g(-1)。该材料还表现出优异的充放电稳定性,在5 A g(-1)的电流密度下连续进行1000次充放电循环后,仍保持其初始电容的90.2%。从更广泛的角度来看,我们的研究及其出色的结果不仅为制备纳米结构的Co3O4提供了一种可行的途径,也提醒我们要更加关注无需复杂工艺和精密仪器的简单合成方法。