Suppr超能文献

用于人群空气污染暴露估计的观测融合区域空气质量模型结果评估。

Evaluation of observation-fused regional air quality model results for population air pollution exposure estimation.

作者信息

Chen Gang, Li Jingyi, Ying Qi, Sherman Seth, Perkins Neil, Sundaram Rajeshwari, Mendola Pauline

机构信息

Zachry Department of Civil Engineering, Texas A&M University, College Station, TX 77843, United States.

Zachry Department of Civil Engineering, Texas A&M University, College Station, TX 77843, United States.

出版信息

Sci Total Environ. 2014 Jul 1;485-486:563-574. doi: 10.1016/j.scitotenv.2014.03.107. Epub 2014 Apr 17.

Abstract

In this study, Community Multiscale Air Quality (CMAQ) model was applied to predict ambient gaseous and particulate concentrations during 2001 to 2010 in 15 hospital referral regions (HRRs) using a 36-km horizontal resolution domain. An inverse distance weighting based method was applied to produce exposure estimates based on observation-fused regional pollutant concentration fields using the differences between observations and predictions at grid cells where air quality monitors were located. Although the raw CMAQ model is capable of producing satisfying results for O3 and PM2.5 based on EPA guidelines, using the observation data fusing technique to correct CMAQ predictions leads to significant improvement of model performance for all gaseous and particulate pollutants. Regional average concentrations were calculated using five different methods: 1) inverse distance weighting of observation data alone, 2) raw CMAQ results, 3) observation-fused CMAQ results, 4) population-averaged raw CMAQ results and 5) population-averaged fused CMAQ results. It shows that while O3 (as well as NOx) monitoring networks in the HRRs are dense enough to provide consistent regional average exposure estimation based on monitoring data alone, PM2.5 observation sites (as well as monitors for CO, SO2, PM10 and PM2.5 components) are usually sparse and the difference between the average concentrations estimated by the inverse distance interpolated observations, raw CMAQ and fused CMAQ results can be significantly different. Population-weighted average should be used to account for spatial variation in pollutant concentration and population density. Using raw CMAQ results or observations alone might lead to significant biases in health outcome analyses.

摘要

在本研究中,应用社区多尺度空气质量(CMAQ)模型,以36公里的水平分辨率域预测2001年至2010年期间15个医院转诊区域(HRR)的环境气态和颗粒物浓度。采用基于反距离加权的方法,利用空气质量监测仪所在网格单元处观测值与预测值之间的差异,基于观测融合的区域污染物浓度场生成暴露估计值。尽管原始的CMAQ模型能够根据美国环境保护局(EPA)的指导方针,对臭氧(O3)和细颗粒物(PM2.5)产生令人满意的结果,但使用观测数据融合技术校正CMAQ预测结果可显著提高所有气态和颗粒物污染物的模型性能。使用五种不同方法计算区域平均浓度:1)仅观测数据的反距离加权法;2)原始CMAQ结果;3)观测融合的CMAQ结果;4)人口平均的原始CMAQ结果;5)人口平均的融合CMAQ结果。结果表明,虽然HRR中的O3(以及氮氧化物)监测网络足够密集,仅基于监测数据就能提供一致的区域平均暴露估计,但PM2.5观测站点(以及一氧化碳、二氧化硫、PM10和PM2.5成分的监测仪)通常较为稀疏,通过反距离插值观测、原始CMAQ和融合CMAQ结果估计的平均浓度之间可能存在显著差异。应使用人口加权平均值来考虑污染物浓度和人口密度的空间变化。仅使用原始CMAQ结果或观测值可能会导致健康结果分析出现重大偏差。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da22/4151129/2b8f64a1ac3a/nihms-587659-f0001.jpg

相似文献

引用本文的文献

本文引用的文献

6
Contemporary cesarean delivery practice in the United States.当代美国的剖宫产实践。
Am J Obstet Gynecol. 2010 Oct;203(4):326.e1-326.e10. doi: 10.1016/j.ajog.2010.06.058. Epub 2010 Aug 12.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验