Ding Yin, Spund Brian, Glazman Sofya, Shrier Eric M, Miri Shahnaz, Selesnick Ivan, Bodis-Wollner Ivan
Department of Electrical and Computer Engineering, Polytechnic Institute of New York University, Brooklyn, NY, USA.
J Neural Transm (Vienna). 2014 Nov;121(11):1367-76. doi: 10.1007/s00702-014-1214-2. Epub 2014 Apr 20.
Spectral-domain Optical coherence tomography (OCT) has shown remarkable utility in the study of retinal disease and has helped to characterize the fovea in Parkinson disease (PD) patients. We developed a detailed mathematical model based on raw OCT data to allow differentiation of foveae of PD patients from healthy controls. Of the various models we tested, a difference of a Gaussian and a polynomial was found to have "the best fit". Decision was based on mathematical evaluation of the fit of the model to the data of 45 control eyes versus 50 PD eyes. We compared the model parameters in the two groups using receiver-operating characteristics (ROC). A single parameter discriminated 70 % of PD eyes from controls, while using seven of the eight parameters of the model allowed 76 % to be discriminated. The future clinical utility of mathematical modeling in study of diffuse neurodegenerative conditions that also affect the fovea is discussed.
光谱域光学相干断层扫描(OCT)在视网膜疾病研究中已显示出显著效用,并有助于对帕金森病(PD)患者的黄斑中心凹进行特征描述。我们基于原始OCT数据开发了一个详细的数学模型,以区分PD患者和健康对照者的黄斑中心凹。在我们测试的各种模型中,发现高斯函数和多项式的差值具有“最佳拟合”。决策基于对该模型与45只对照眼和50只PD眼的数据拟合情况的数学评估。我们使用受试者工作特征(ROC)比较了两组的模型参数。单个参数可将70%的PD眼与对照眼区分开,而使用模型的八个参数中的七个可区分76%的PD眼。本文还讨论了数学建模在研究同样影响黄斑中心凹的弥漫性神经退行性疾病中的未来临床效用。