Suppr超能文献

一种用于表征中央凹坑形状的倾斜逐段高斯模型。

A sloped piecemeal Gaussian model for characterising foveal pit shape.

作者信息

Liu Lei, Marsh-Tootle Wendy, Harb Elise N, Hou Wei, Zhang Qinghua, Anderson Heather A, Norton Thomas T, Weise Katherine K, Gwiazda Jane E, Hyman Leslie

机构信息

School of Optometry, University of Alabama at Birmingham, Birmingham, USA.

School of Optometry, University of California at Berkeley, Berkeley, USA.

出版信息

Ophthalmic Physiol Opt. 2016 Nov;36(6):615-631. doi: 10.1111/opo.12321.

Abstract

PURPOSE

High-quality optical coherence tomography (OCT) macular scans make it possible to distinguish a range of normal and diseased states by characterising foveal pit shape. Existing mathematical models lack the flexibility to capture all known pit variations and thus characterise the pit with limited accuracy. This study aimed to develop a new model that provides a more robust characterisation of individual foveal pit variations.

METHODS

A Sloped Piecemeal Gaussian (SPG) model, consisting of a linear combination of a tilted line and a piecemeal Gaussian function (two halves of a Gaussian connected by a separate straight line), was developed to fit retinal thickness data with the flexibility to characterise different degrees of pit asymmetry and pit bottom flatness. It fitted the raw pit data between the two rims of the fovea to improve accuracy. The model was tested on 3488 macular scans from both eyes of 581 young adults (376 myopes and 206 non-myopes, mean (S.D.) age 21.9 (1.4) years). Estimates for retinal thickness, wall height and slope, pit depth and width were derived from the best-fitting model curve. Ten variations of Gaussian and Difference of Gaussian models were fitted to the same scans and compared with the SPG model for goodness of fit (by Root mean square error, RMSE), model complexity (by the Bayesian Information Criteria) and model fidelity.

RESULTS

The SPG model produced excellent goodness of fit (mean RMSE = 4.25 and 3.89 μm; 95% CI: 4.20, 4.30 and 3.86, 3.93 for fitting horizontal and vertical profiles respectively). The SPG model showed pit asymmetry, with average nasal walls 17.6 (11.6) μm higher and 0.96 (0.61) steeper than temporal walls and average superior walls 7.0 (12.2) μm higher and 0.41 (0.65) steeper than the inferior walls. The SPG model also revealed a continuum of human foveal shapes, from round bottoms to extended flat bottoms (up to 563 μm). 49.1% of foveal profiles were best fitted with a flat bottom >30 μm wide. Compared with the other tested models, the SPG was the preferred model overall based on the Bayesian Information Criteria.

CONCLUSIONS

The SPG is a new parsimonious mathematical model that improves upon other models by accounting for wall asymmetry and flat pit bottoms, providing an excellent fit and more faithful characterisation of typical foveal pit shapes and their known variations. This new model may be helpful in distinguishing normal foveal shape variations by refractive status as well by other characteristics such as sex, ethnicity and age.

摘要

目的

高质量的光学相干断层扫描(OCT)黄斑扫描能够通过对中央凹坑形状进行特征化来区分一系列正常和患病状态。现有的数学模型缺乏灵活性,无法捕捉所有已知的凹坑变化,因此对凹坑的特征化精度有限。本研究旨在开发一种新模型,以更稳健地描述个体中央凹坑的变化。

方法

开发了一种倾斜分段高斯(SPG)模型,该模型由一条倾斜线和一个分段高斯函数(由一条单独的直线连接的高斯函数的两半)的线性组合组成,用于拟合视网膜厚度数据,具有描述不同程度的凹坑不对称性和凹坑底部平坦度的灵活性。它拟合了中央凹两个边缘之间的原始凹坑数据,以提高准确性。该模型在581名年轻成年人(376名近视者和206名非近视者,平均(标准差)年龄21.9(1.4)岁)双眼的3488次黄斑扫描上进行了测试。从最佳拟合模型曲线中得出视网膜厚度、壁高和斜率、凹坑深度和宽度的估计值。将高斯模型和高斯差分模型的十种变体拟合到相同的扫描数据上,并与SPG模型进行拟合优度(通过均方根误差,RMSE)、模型复杂性(通过贝叶斯信息准则)和模型保真度的比较。

结果

SPG模型具有出色的拟合优度(水平和垂直剖面拟合的平均RMSE分别为4.25和3.89μm;95%置信区间:4.20,4.30和3.86,3.93)。SPG模型显示出凹坑不对称性,平均鼻侧壁比颞侧壁高17.6(11.6)μm,陡0.96(0.61),平均上壁比下壁高7.0(12.2)μm,陡0.41(0.65)。SPG模型还揭示了人类中央凹形状的连续性,从圆形底部到扩展的平坦底部(长达563μm)。49.1%的中央凹剖面最适合底部宽度>30μm的平坦底部。与其他测试模型相比,基于贝叶斯信息准则,SPG总体上是首选模型。

结论

SPG是一种新的简约数学模型,通过考虑壁不对称性和平坦的凹坑底部,在其他模型的基础上进行了改进,能够出色地拟合并更忠实地描述典型的中央凹坑形状及其已知变化。这种新模型可能有助于根据屈光状态以及性别、种族和年龄等其他特征来区分正常的中央凹形状变化。

相似文献

1
A sloped piecemeal Gaussian model for characterising foveal pit shape.
Ophthalmic Physiol Opt. 2016 Nov;36(6):615-631. doi: 10.1111/opo.12321.
2
Foveal Curvature and Asymmetry Assessed Using Optical Coherence Tomography.
Optom Vis Sci. 2017 Jun;94(6):664-671. doi: 10.1097/OPX.0000000000001084.
3
Analysis of foveal characteristics and their asymmetries in the normal population.
Exp Eye Res. 2016 Jul;148:1-11. doi: 10.1016/j.exer.2016.05.013. Epub 2016 May 15.
4
Repeatability of Foveal Measurements Using Spectralis Optical Coherence Tomography Segmentation Software.
PLoS One. 2015 Jun 15;10(6):e0129005. doi: 10.1371/journal.pone.0129005. eCollection 2015.
5
Bilateral changes in foveal structure in individuals with amblyopia.
Ophthalmology. 2013 Feb;120(2):395-403. doi: 10.1016/j.ophtha.2012.07.088. Epub 2012 Sep 29.
6
Parametric model for the 3D reconstruction of individual fovea shape from OCT data.
Exp Eye Res. 2014 Feb;119:19-26. doi: 10.1016/j.exer.2013.11.008. Epub 2013 Nov 28.
7
Mathematical analysis of the normal anatomy of the aging fovea.
Invest Ophthalmol Vis Sci. 2014 Aug 28;55(9):5962-6. doi: 10.1167/iovs.14-15278.
8
Reconstructing foveal pit morphology from optical coherence tomography imaging.
Br J Ophthalmol. 2009 Sep;93(9):1223-7. doi: 10.1136/bjo.2008.150110. Epub 2009 May 26.
9
Misalignment of foveal pit and foveal bulge determined by ultrahigh-resolution SD-OCT in normal eyes.
Graefes Arch Clin Exp Ophthalmol. 2020 Oct;258(10):2131-2139. doi: 10.1007/s00417-020-04813-6. Epub 2020 Jun 23.
10
Mathematical analysis of specific anatomic foveal configurations predisposing to the formation of macular holes.
Invest Ophthalmol Vis Sci. 2011 Oct 21;52(11):8266-70. doi: 10.1167/iovs.11-8191.

引用本文的文献

1
Gender- and age-related differences in foveal pit morphology.
Indian J Ophthalmol. 2024 Jan 1;72(Suppl 1):S37-S41. doi: 10.4103/IJO.IJO_146_23. Epub 2023 Dec 22.
3
Wide-based foveal pit: a predisposition to idiopathic epiretinal membrane.
Graefes Arch Clin Exp Ophthalmol. 2021 Aug;259(8):2095-2102. doi: 10.1007/s00417-021-05092-5. Epub 2021 Feb 2.
4
The Fovea in Retinopathy of Prematurity.
Invest Ophthalmol Vis Sci. 2020 Sep 1;61(11):28. doi: 10.1167/iovs.61.11.28.
6
Direct modeling of foveal pit morphology from distortion-corrected OCT images.
Biomed Opt Express. 2019 Aug 26;10(9):4815-4824. doi: 10.1364/BOE.10.004815. eCollection 2019 Sep 1.
9
CuBe: parametric modeling of 3D foveal shape using cubic Bézier.
Biomed Opt Express. 2017 Aug 22;8(9):4181-4199. doi: 10.1364/BOE.8.004181. eCollection 2017 Sep 1.

本文引用的文献

1
Assessment of Retinal and Choroidal Measurements in Chinese School-Age Children with Cirrus-HD Optical Coherence Tomography.
PLoS One. 2016 Jul 8;11(7):e0158948. doi: 10.1371/journal.pone.0158948. eCollection 2016.
2
FOVEA: a new program to standardize the measurement of foveal pit morphology.
PeerJ. 2016 Apr 11;4:e1785. doi: 10.7717/peerj.1785. eCollection 2016.
3
Macular Thickness in Myopia: An OCT Study of Young Chinese Patients.
Curr Eye Res. 2016 Oct;41(10):1373-1378. doi: 10.3109/02713683.2015.1119854. Epub 2016 Feb 10.
4
Spectral-Domain Optical Coherence Tomography Imaging in 67 321 Adults: Associations with Macular Thickness in the UK Biobank Study.
Ophthalmology. 2016 Apr;123(4):829-40. doi: 10.1016/j.ophtha.2015.11.009. Epub 2015 Dec 30.
5
Macular Diagnostic Ability in OCT for Assessing Glaucoma in High Myopia.
Optom Vis Sci. 2016 Feb;93(2):126-35. doi: 10.1097/OPX.0000000000000776.
6
Macular Thickness in Highly Myopic Children Aged 3 to 7 Years.
J Pediatr Ophthalmol Strabismus. 2015 Sep-Oct;52(5):282-6. doi: 10.3928/01913913-20150526-01. Epub 2015 May 28.
7
Foveal and Macular Thickness Evaluation by Spectral OCT SLO and Its Relation with Axial Length in Various Degree of Myopia.
J Clin Diagn Res. 2015 Mar;9(3):NC01-4. doi: 10.7860/JCDR/2015/11780.5676. Epub 2015 Mar 1.
8
Macular measurements using spectral-domain optical coherence tomography in Chinese myopic children.
Invest Ophthalmol Vis Sci. 2014 Oct 14;55(11):7410-6. doi: 10.1167/iovs.14-13894.
9
Mathematical analysis of the normal anatomy of the aging fovea.
Invest Ophthalmol Vis Sci. 2014 Aug 28;55(9):5962-6. doi: 10.1167/iovs.14-15278.
10
Relationship between foveal cone specialization and pit morphology in albinism.
Invest Ophthalmol Vis Sci. 2014 May 20;55(7):4186-98. doi: 10.1167/iovs.13-13217.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验