Suppr超能文献

细胞-水凝胶机械传感导论。

Introduction to cell-hydrogel mechanosensing.

作者信息

Ahearne Mark

机构信息

Trinity Centre for Bioengineering , Trinity Biomedical Sciences Institute, Trinity College Dublin , Dublin 2 , Ireland ; Department of Mechanical and Manufacturing Engineering, School of Engineering , Trinity College Dublin , Dublin , Ireland.

出版信息

Interface Focus. 2014 Apr 6;4(2):20130038. doi: 10.1098/rsfs.2013.0038.

Abstract

The development of hydrogel-based biomaterials represents a promising approach to generating new strategies for tissue engineering and regenerative medicine. In order to develop more sophisticated cell-seeded hydrogel constructs, it is important to understand how cells mechanically interact with hydrogels. In this paper, we review the mechanisms by which cells remodel hydrogels, the influence that the hydrogel mechanical and structural properties have on cell behaviour and the role of mechanical stimulation in cell-seeded hydrogels. Cell-mediated remodelling of hydrogels is directed by several cellular processes, including adhesion, migration, contraction, degradation and extracellular matrix deposition. Variations in hydrogel stiffness, density, composition, orientation and viscoelastic characteristics all affect cell activity and phenotype. The application of mechanical force on cells encapsulated in hydrogels can also instigate changes in cell behaviour. By improving our understanding of cell-material mechano-interactions in hydrogels, this should enable a new generation of regenerative medical therapies to be developed.

摘要

基于水凝胶的生物材料的发展为组织工程和再生医学产生新策略提供了一种很有前景的方法。为了开发更复杂的细胞接种水凝胶构建体,了解细胞如何与水凝胶进行机械相互作用很重要。在本文中,我们综述了细胞重塑水凝胶的机制、水凝胶的机械和结构特性对细胞行为的影响以及机械刺激在细胞接种水凝胶中的作用。细胞介导的水凝胶重塑由多种细胞过程指导,包括黏附、迁移、收缩、降解和细胞外基质沉积。水凝胶硬度、密度、组成、取向和粘弹性特征的变化都会影响细胞活性和表型。对包裹在水凝胶中的细胞施加机械力也会引发细胞行为的变化。通过增进我们对水凝胶中细胞 - 材料机械相互作用的理解,这应该能够开发出新一代的再生医学疗法。

相似文献

1
Introduction to cell-hydrogel mechanosensing.
Interface Focus. 2014 Apr 6;4(2):20130038. doi: 10.1098/rsfs.2013.0038.
2
3
Translational mechanobiology: Designing synthetic hydrogel matrices for improved in vitro models and cell-based therapies.
Acta Biomater. 2019 Aug;94:97-111. doi: 10.1016/j.actbio.2019.05.055. Epub 2019 May 24.
4
Manufacturing of hydrogel biomaterials with controlled mechanical properties for tissue engineering applications.
Acta Biomater. 2017 Oct 15;62:42-63. doi: 10.1016/j.actbio.2017.07.028. Epub 2017 Jul 20.
5
Microscale characterization of the viscoelastic properties of hydrogel biomaterials using dual-mode ultrasound elastography.
Biomaterials. 2016 May;88:12-24. doi: 10.1016/j.biomaterials.2016.02.019. Epub 2016 Feb 18.
6
Intact vitreous humor as a potential extracellular matrix hydrogel for cartilage tissue engineering applications.
Acta Biomater. 2019 Feb;85:117-130. doi: 10.1016/j.actbio.2018.12.022. Epub 2018 Dec 18.
8
Mechanics of 3D Cell-Hydrogel Interactions: Experiments, Models, and Mechanisms.
Chem Rev. 2021 Sep 22;121(18):11085-11148. doi: 10.1021/acs.chemrev.1c00046. Epub 2021 Sep 2.
9
Engineered hydrogels for mechanobiology.
Nat Rev Methods Primers. 2022 Dec 15;2:98. doi: 10.1038/s43586-022-00179-7.
10
Porous Scaffold-Hydrogel Composites Spatially Regulate 3D Cellular Mechanosensing.
Front Med Technol. 2022 May 2;4:884314. doi: 10.3389/fmedt.2022.884314. eCollection 2022.

引用本文的文献

1
Influence of Structure-Property Relationships of Polymeric Biomaterials for Engineering Multicellular Spheroids.
Bioengineering (Basel). 2025 Aug 9;12(8):857. doi: 10.3390/bioengineering12080857.
4
Matrix stiffness and viscoelasticity influence human mesenchymal stem cell immunomodulation.
Mechanobiol Med. 2024 Dec 8;3(1):100111. doi: 10.1016/j.mbm.2024.100111. eCollection 2025 Mar.
5
Magnetic scaffolds for the mechanotransduction stimulation in tendon tissue regeneration.
Mater Today Bio. 2025 Mar 26;32:101699. doi: 10.1016/j.mtbio.2025.101699. eCollection 2025 Jun.
7
Enhancing Form Stability: Shrink-Resistant Hydrogels Made of Interpenetrating Networks of Recombinant Spider Silk and Collagen-I.
Adv Healthc Mater. 2025 May;14(12):e2500311. doi: 10.1002/adhm.202500311. Epub 2025 Mar 27.
8
Microgel-based bioink for extrusion-based 3D bioprinting and its applications in tissue engineering.
Bioact Mater. 2025 Feb 20;48:273-293. doi: 10.1016/j.bioactmat.2025.02.003. eCollection 2025 Jun.
9
Synthesis and use of thermoplastic polymers for tissue engineering purposes.
Int J Pharm X. 2024 Dec 17;9:100313. doi: 10.1016/j.ijpx.2024.100313. eCollection 2025 Jun.
10
Statistical optimization of cell-hydrogel interactions for green microbiology - a tutorial review.
RSC Sustain. 2024 Oct 21;2(12):3750-3768. doi: 10.1039/d4su00400k. eCollection 2024 Nov 27.

本文引用的文献

1
Human iPSC-derived neural crest stem cells promote tendon repair in a rat patellar tendon window defect model.
Tissue Eng Part A. 2013 Nov;19(21-22):2439-51. doi: 10.1089/ten.TEA.2012.0453. Epub 2013 Aug 9.
2
Designing degradable hydrogels for orthogonal control of cell microenvironments.
Chem Soc Rev. 2013 Sep 7;42(17):7335-72. doi: 10.1039/c3cs60040h. Epub 2013 Apr 22.
4
The influence of substrate stiffness gradients on primary human dermal fibroblasts.
Biomaterials. 2013 Jul;34(21):5070-7. doi: 10.1016/j.biomaterials.2013.03.075. Epub 2013 Apr 12.
5
Composite electrospun gelatin fiber-alginate gel scaffolds for mechanically robust tissue engineered cornea.
J Mech Behav Biomed Mater. 2013 May;21:185-94. doi: 10.1016/j.jmbbm.2013.03.001. Epub 2013 Mar 14.
8
Integration and regression of implanted engineered human vascular networks during deep wound healing.
Stem Cells Transl Med. 2013 Apr;2(4):297-306. doi: 10.5966/sctm.2012-0111. Epub 2013 Mar 13.
9
Mesenchymal stem cell durotaxis depends on substrate stiffness gradient strength.
Biotechnol J. 2013 Apr;8(4):472-84. doi: 10.1002/biot.201200205. Epub 2013 Feb 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验