Suppr超能文献

从实验结构集合、分子动力学集合和粗粒弹性网络模型比较蛋白质动力学。

Comparisons of Protein Dynamics from Experimental Structure Ensembles, Molecular Dynamics Ensembles, and Coarse-Grained Elastic Network Models.

机构信息

Bioinformatics and Computational Biology Interdepartmental Graduate Program , Iowa State University , Ames , Iowa 50011-1178 , United States.

Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology , Iowa State University , Ames , Iowa 50011-1178 , United States.

出版信息

J Phys Chem B. 2018 May 31;122(21):5409-5417. doi: 10.1021/acs.jpcb.7b11668. Epub 2018 Feb 9.

Abstract

Predicting protein motions is important for bridging the gap between protein structure and function. With growing numbers of structures of the same or closely related proteins becoming available, it is now possible to understand more about the intrinsic dynamics of a protein with principal component analysis (PCA) of the motions apparent within ensembles of experimental structures. In this paper, we compare the motions extracted from experimental ensembles of 50 different proteins with the modes of motion predicted by several types of coarse-grained elastic network models (ENMs) which additionally take into account more details of either the protein geometry or the amino acid specificity. We further compare the structural variations in the experimental ensembles with the motions sampled in molecular dynamics (MD) simulations for a smaller subset of 17 proteins with available trajectories. We find that the correlations between the motions extracted from MD trajectories and experimental structure ensembles are slightly different than those for the ENMs, possibly reflecting potential sampling biases. We find that there are small gains in the predictive power of the ENMs in reproducing motions present in either experimental or MD ensembles by accounting for the protein geometry rather than the amino acid specificity of the interactions.

摘要

预测蛋白质的运动对于弥合蛋白质结构和功能之间的差距非常重要。随着越来越多相同或密切相关的蛋白质结构的出现,现在可以通过对实验结构集合中明显的运动进行主成分分析 (PCA),来了解蛋白质内在动力学的更多信息。在本文中,我们比较了从 50 种不同蛋白质的实验集合中提取的运动与几种类型的粗粒弹性网络模型 (ENM) 预测的运动模式,这些模型还考虑了蛋白质几何形状或氨基酸特异性的更多细节。我们还将实验集合中的结构变化与具有可用轨迹的 17 种蛋白质的较小子集的分子动力学 (MD) 模拟中采样的运动进行了比较。我们发现,从 MD 轨迹和实验结构集合中提取的运动之间的相关性与 ENM 的相关性略有不同,这可能反映了潜在的采样偏差。我们发现,通过考虑蛋白质几何形状而不是相互作用的氨基酸特异性,ENM 在预测实验或 MD 集合中存在的运动方面的预测能力略有提高。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验