Suppr超能文献

脓毒症中凝血与补体系统的相互作用。

Crosstalk between the coagulation and complement systems in sepsis.

机构信息

Cardiovascular Biology, Research Programs, Oklahoma Medical Research Foundation, Oklahoma City, OK.

Cardiovascular Biology, Research Programs, Oklahoma Medical Research Foundation, Oklahoma City, OK.

出版信息

Thromb Res. 2014 May;133 Suppl 1(0 1):S28-31. doi: 10.1016/j.thromres.2014.03.014.

Abstract

Sepsis is a potent activator of the hemostatic and complement systems. While local activation of these proteolytic cascades contributes to the host defense, their uncontrolled systemic activation has major tissue damaging effects that lead to multiple organ failure and death. We have extensively studied the activation of complement and coagulation cascades in experimental sepsis using baboons challenged with live bacteria, such as Gram-negative Escherichia coli or Gram-positive Staphylococcus aureus and Bacillus anthracis, or with the bacterial product peptidoglycan. We observed that these challenges rapidly induce disseminated intravascular coagulation and robust complement activation. We applied a potent C3 convertase inhibitor, compstatin, which prevented sepsis-induced complement activation, reduced thrombocytopenia, decreased the coagulopathic responses, and preserving the endothelial anticoagulant properties. Overall, our work demonstrates that live bacteria and bacterial products activate the complement and coagulation cascades, and that blocking formation of complement activation products, especially during the organ failure stage of severe sepsis could be a potentially important therapeutic strategy.

摘要

脓毒症是止血和补体系统的强效激活剂。虽然这些蛋白水解级联的局部激活有助于宿主防御,但它们不受控制的全身激活会产生重大的组织损伤效应,导致多器官衰竭和死亡。我们使用革兰氏阴性大肠杆菌或革兰氏阳性金黄色葡萄球菌和炭疽杆菌或细菌产物肽聚糖对实验性脓毒症中的补体和凝血级联的激活进行了广泛研究。我们观察到这些挑战会迅速引起弥漫性血管内凝血和强烈的补体激活。我们应用了一种有效的 C3 转化酶抑制剂,即 compstatin,它可以防止脓毒症引起的补体激活,减少血小板减少,降低凝血异常反应,并保持内皮抗凝特性。总的来说,我们的工作表明,活细菌和细菌产物会激活补体和凝血级联,而阻断补体激活产物的形成,特别是在严重脓毒症的器官衰竭阶段,可能是一种潜在的重要治疗策略。

相似文献

1
Crosstalk between the coagulation and complement systems in sepsis.
Thromb Res. 2014 May;133 Suppl 1(0 1):S28-31. doi: 10.1016/j.thromres.2014.03.014.
2
3
Unraveling the Intricate Web: Complement Activation Shapes the Pathogenesis of Sepsis-Induced Coagulopathy.
J Innate Immun. 2024;16(1):337-353. doi: 10.1159/000539502. Epub 2024 May 31.
4
Complexity of complement activation in sepsis.
J Cell Mol Med. 2008 Dec;12(6A):2245-54. doi: 10.1111/j.1582-4934.2008.00504.x.
5
Peptidoglycan induces disseminated intravascular coagulation in baboons through activation of both coagulation pathways.
Blood. 2018 Aug 23;132(8):849-860. doi: 10.1182/blood-2017-10-813618. Epub 2018 Jun 19.
6
Inhibition of contact-mediated activation of factor XI protects baboons against -induced organ damage and death.
Blood Adv. 2019 Feb 26;3(4):658-669. doi: 10.1182/bloodadvances.2018029983.
8
Sepsis, thrombosis and organ dysfunction.
Thromb Res. 2012 Mar;129(3):290-5. doi: 10.1016/j.thromres.2011.10.013. Epub 2011 Nov 5.
10
Coagulopathy of Acute Sepsis.
Semin Thromb Hemost. 2015 Sep;41(6):650-8. doi: 10.1055/s-0035-1556730. Epub 2015 Aug 25.

引用本文的文献

3
Disseminated intravascular coagulation.
J Intensive Care. 2025 Jun 6;13(1):32. doi: 10.1186/s40560-025-00794-y.
4
Unravelling the impact of SARS-CoV-2 on hemostatic and complement systems: a systems immunology perspective.
Front Immunol. 2025 Jan 13;15:1457324. doi: 10.3389/fimmu.2024.1457324. eCollection 2024.
5
Recent Advances in Pathogenesis and Anticoagulation Treatment of Sepsis-Induced Coagulopathy.
J Inflamm Res. 2025 Jan 18;18:737-750. doi: 10.2147/JIR.S495223. eCollection 2025.
6
Integrative omics analysis identifies biomarkers of septic cardiomyopathy.
PLoS One. 2024 Nov 15;19(11):e0310412. doi: 10.1371/journal.pone.0310412. eCollection 2024.
8
The dysfunction of complement and coagulation in diseases: the implications for the therapeutic interventions.
MedComm (2020). 2024 Oct 23;5(11):e785. doi: 10.1002/mco2.785. eCollection 2024 Nov.
10
Pathophysiological dynamics in the contact, coagulation, and complement systems during sepsis: Potential targets for nafamostat mesilate.
J Intensive Med. 2024 Apr 10;4(4):453-467. doi: 10.1016/j.jointm.2024.02.003. eCollection 2024 Oct.

本文引用的文献

1
Acute lung injury and fibrosis in a baboon model of Escherichia coli sepsis.
Am J Respir Cell Mol Biol. 2014 Feb;50(2):439-50. doi: 10.1165/rcmb.2013-0219OC.
2
Bacillus anthracis peptidoglycan activates human platelets through FcγRII and complement.
Blood. 2013 Jul 25;122(4):571-9. doi: 10.1182/blood-2013-02-486613. Epub 2013 Jun 3.
3
Rapid activation of monocyte tissue factor by antithymocyte globulin is dependent on complement and protein disulfide isomerase.
Blood. 2013 Mar 21;121(12):2324-35. doi: 10.1182/blood-2012-10-460493. Epub 2013 Jan 11.
5
Crosstalk of the plasma contact system with bacteria.
Thromb Res. 2012 Oct;130 Suppl 1:S78-83. doi: 10.1016/j.thromres.2012.08.284.
7
Pathophysiology, staging and therapy of severe sepsis in baboon models.
J Cell Mol Med. 2012 Apr;16(4):672-82. doi: 10.1111/j.1582-4934.2011.01454.x.
8
Thrombomodulin and its role in inflammation.
Semin Immunopathol. 2012 Jan;34(1):107-25. doi: 10.1007/s00281-011-0282-8. Epub 2011 Jul 31.
9
10
Inflammatory cytokine response to Bacillus anthracis peptidoglycan requires phagocytosis and lysosomal trafficking.
Infect Immun. 2010 Jun;78(6):2418-28. doi: 10.1128/IAI.00170-10. Epub 2010 Mar 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验