Laboratory for Synaptic Plasticity and Connectivity, RIKEN Center for Brain Science, Wako-shi, Saitama, Japan.
Department of Physiology, Keio University School of Medicine, Tokyo, Japan.
Nat Commun. 2024 Aug 31;15(1):7572. doi: 10.1038/s41467-024-51919-0.
Neurons receive thousands of inputs onto their dendritic arbour, where individual synapses undergo activity-dependent plasticity. Long-lasting changes in postsynaptic strengths correlate with changes in spine head volume. The magnitude and direction of such structural plasticity - potentiation (sLTP) and depression (sLTD) - depend upon the number and spatial distribution of stimulated synapses. However, how neurons allocate resources to implement synaptic strength changes across space and time amongst neighbouring synapses remains unclear. Here we combined experimental and modelling approaches to explore the elementary processes underlying multi-spine plasticity. We used glutamate uncaging to induce sLTP at varying number of synapses sharing the same dendritic branch, and we built a model incorporating a dual role Ca-dependent component that induces spine growth or shrinkage. Our results suggest that competition among spines for molecular resources is a key driver of multi-spine plasticity and that spatial distance between simultaneously stimulated spines impacts the resulting spine dynamics.
神经元在其树突棘上接收数千个输入,在这些输入中,各个突触会经历依赖于活动的可塑性变化。突触后强度的长期变化与棘突头体积的变化相关。这种结构可塑性的幅度和方向——增强(sLTP)和抑制(sLTD)——取决于被刺激的突触的数量和空间分布。然而,神经元如何在空间和时间上在相邻的突触之间分配资源来实现突触强度的变化仍不清楚。在这里,我们结合了实验和建模方法来探索多棘突可塑性的基本过程。我们使用谷氨酸非笼锁技术在同一树突分支上的不同数量的突触上诱导 sLTP,并建立了一个模型,该模型包含一个双角色 Ca 依赖性组件,该组件可诱导棘突生长或收缩。我们的结果表明,棘突之间对分子资源的竞争是多棘突可塑性的关键驱动因素,并且同时被刺激的棘突之间的空间距离会影响产生的棘突动力学。