Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030-3401, USA.
J Neurosci Res. 2010 Nov 1;88(14):2991-3001. doi: 10.1002/jnr.22444.
In the field of cortical cellular physiology, much effort has been invested in understanding thick apical dendrites of pyramidal neurons and the regenerative sodium and calcium spikes that take place in the apical trunk. Here we focus on thin dendrites of pyramidal cells (basal, oblique, and tuft dendrites), and we discuss one relatively novel form of an electrical signal ("NMDA spike") that is specific for these branches. Basal, oblique, and apical tuft dendrites receive a high density of glutamatergic synaptic contacts. Synchronous activation of 10-50 neighboring glutamatergic synapses triggers a local dendritic regenerative potential, NMDA spike/plateau, which is characterized by significant local amplitude (40-50 mV) and an extraordinary duration (up to several hundred milliseconds). The NMDA plateau potential, when it is initiated in an apical tuft dendrite, is able to maintain a good portion of that tuft in a sustained depolarized state. However, if NMDA-dominated plateau potentials originate in proximal segments of basal dendrites, they regularly bring the neuronal cell body into a sustained depolarized state, which resembles a cortical Up state. At each dendritic initiation site (basal, oblique, and tuft) an NMDA spike creates favorable conditions for causal interactions of active synaptic inputs, including the spatial or temporal binding of information, as well as processes of short-term and long-term synaptic modifications (e.g., long-term potentiation or long-term depression). Because of their strong amplitudes and durations, local dendritic NMDA spikes make up the cellular substrate for multisite independent subunit computations that enrich the computational power and repertoire of cortical pyramidal cells. We propose that NMDA spikes are likely to play significant roles in cortical information processing in awake animals (spatiotemporal binding, working memory) and during slow-wave sleep (neuronal Up states, consolidation of memories).
在皮质细胞生理学领域,人们投入了大量精力来理解锥体神经元的厚顶树突和顶树突干中发生的再生钠和钙峰。在这里,我们专注于锥体细胞的细树突(基底、斜和丛树突),并讨论一种相对新颖的电信号形式(“NMDA 峰”),这种信号形式是这些分支特有的。基底、斜和顶丛树突接收高密度的谷氨酸能突触接触。10-50 个相邻谷氨酸能突触的同步激活会引发局部树突再生潜能 NMDA 峰/平台,其特征是局部幅度显著(40-50 mV)和持续时间特别长(长达数百毫秒)。当 NMDA 平台电位在顶丛树突中起始时,它能够使该丛树突的大部分保持持续去极化状态。然而,如果 NMDA 主导的平台电位起源于基底树突的近端段,它们通常会使神经元细胞体进入持续去极化状态,类似于皮质 Up 状态。在每个树突起始位点(基底、斜和丛),NMDA 峰都会为活性突触输入的因果相互作用创造有利条件,包括信息的空间或时间绑定,以及短期和长期突触修饰(例如,长时程增强或长时程抑制)过程。由于其强烈的幅度和持续时间,局部树突 NMDA 峰构成了多部位独立亚基计算的细胞基础,增强了皮质锥体细胞的计算能力和功能。我们提出,NMDA 峰可能在清醒动物的皮质信息处理(时空绑定、工作记忆)和慢波睡眠期间(神经元 Up 状态、记忆巩固)中发挥重要作用。