Suppr超能文献

树突棘 NMDA 峰的十年。

The decade of the dendritic NMDA spike.

机构信息

Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030-3401, USA.

出版信息

J Neurosci Res. 2010 Nov 1;88(14):2991-3001. doi: 10.1002/jnr.22444.

Abstract

In the field of cortical cellular physiology, much effort has been invested in understanding thick apical dendrites of pyramidal neurons and the regenerative sodium and calcium spikes that take place in the apical trunk. Here we focus on thin dendrites of pyramidal cells (basal, oblique, and tuft dendrites), and we discuss one relatively novel form of an electrical signal ("NMDA spike") that is specific for these branches. Basal, oblique, and apical tuft dendrites receive a high density of glutamatergic synaptic contacts. Synchronous activation of 10-50 neighboring glutamatergic synapses triggers a local dendritic regenerative potential, NMDA spike/plateau, which is characterized by significant local amplitude (40-50 mV) and an extraordinary duration (up to several hundred milliseconds). The NMDA plateau potential, when it is initiated in an apical tuft dendrite, is able to maintain a good portion of that tuft in a sustained depolarized state. However, if NMDA-dominated plateau potentials originate in proximal segments of basal dendrites, they regularly bring the neuronal cell body into a sustained depolarized state, which resembles a cortical Up state. At each dendritic initiation site (basal, oblique, and tuft) an NMDA spike creates favorable conditions for causal interactions of active synaptic inputs, including the spatial or temporal binding of information, as well as processes of short-term and long-term synaptic modifications (e.g., long-term potentiation or long-term depression). Because of their strong amplitudes and durations, local dendritic NMDA spikes make up the cellular substrate for multisite independent subunit computations that enrich the computational power and repertoire of cortical pyramidal cells. We propose that NMDA spikes are likely to play significant roles in cortical information processing in awake animals (spatiotemporal binding, working memory) and during slow-wave sleep (neuronal Up states, consolidation of memories).

摘要

在皮质细胞生理学领域,人们投入了大量精力来理解锥体神经元的厚顶树突和顶树突干中发生的再生钠和钙峰。在这里,我们专注于锥体细胞的细树突(基底、斜和丛树突),并讨论一种相对新颖的电信号形式(“NMDA 峰”),这种信号形式是这些分支特有的。基底、斜和顶丛树突接收高密度的谷氨酸能突触接触。10-50 个相邻谷氨酸能突触的同步激活会引发局部树突再生潜能 NMDA 峰/平台,其特征是局部幅度显著(40-50 mV)和持续时间特别长(长达数百毫秒)。当 NMDA 平台电位在顶丛树突中起始时,它能够使该丛树突的大部分保持持续去极化状态。然而,如果 NMDA 主导的平台电位起源于基底树突的近端段,它们通常会使神经元细胞体进入持续去极化状态,类似于皮质 Up 状态。在每个树突起始位点(基底、斜和丛),NMDA 峰都会为活性突触输入的因果相互作用创造有利条件,包括信息的空间或时间绑定,以及短期和长期突触修饰(例如,长时程增强或长时程抑制)过程。由于其强烈的幅度和持续时间,局部树突 NMDA 峰构成了多部位独立亚基计算的细胞基础,增强了皮质锥体细胞的计算能力和功能。我们提出,NMDA 峰可能在清醒动物的皮质信息处理(时空绑定、工作记忆)和慢波睡眠期间(神经元 Up 状态、记忆巩固)中发挥重要作用。

相似文献

1
The decade of the dendritic NMDA spike.树突棘 NMDA 峰的十年。
J Neurosci Res. 2010 Nov 1;88(14):2991-3001. doi: 10.1002/jnr.22444.
10
The stochastic nature of action potential backpropagation in apical tuft dendrites.顶树突中动作电位逆向传播的随机性
J Neurophysiol. 2017 Aug 1;118(2):1394-1414. doi: 10.1152/jn.00800.2016. Epub 2017 May 31.

引用本文的文献

2
Nonlinearity in Memristors for Neuromorphic Dynamic Systems.用于神经形态动态系统的忆阻器中的非线性
Small Sci. 2021 Sep 28;2(1):2100049. doi: 10.1002/smsc.202100049. eCollection 2022 Jan.
5
A dendritic mechanism for balancing synaptic flexibility and stability.树突状机制平衡突触的灵活性和稳定性。
Cell Rep. 2024 Aug 27;43(8):114638. doi: 10.1016/j.celrep.2024.114638. Epub 2024 Aug 19.
10
Iron imbalance in neurodegeneration.神经退行性变中的铁失衡
Mol Psychiatry. 2024 Apr;29(4):1139-1152. doi: 10.1038/s41380-023-02399-z. Epub 2024 Jan 12.

本文引用的文献

2
Up and down states.上行和下行状态
Scholarpedia J. 2008 Jan 1;3(6):1410. doi: 10.4249/scholarpedia.1410.
3
The memory function of sleep.睡眠的记忆功能。
Nat Rev Neurosci. 2010 Feb;11(2):114-26. doi: 10.1038/nrn2762. Epub 2010 Jan 4.
4
7
Active dendrites enhance neuronal dynamic range.活跃的树突增强神经元的动态范围。
PLoS Comput Biol. 2009 Jun;5(6):e1000402. doi: 10.1371/journal.pcbi.1000402. Epub 2009 Jun 12.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验