Laboratory for Network Biology Research, Department of Electrical Engineering Technion, Haifa, Israel.
Front Comput Neurosci. 2014 Apr 2;8:29. doi: 10.3389/fncom.2014.00029. eCollection 2014.
Many biological systems are modulated by unknown slow processes. This can severely hinder analysis - especially in excitable neurons, which are highly non-linear and stochastic systems. We show the analysis simplifies considerably if the input matches the sparse "spiky" nature of the output. In this case, a linearized spiking Input-Output (I/O) relation can be derived semi-analytically, relating input spike trains to output spikes based on known biophysical properties. Using this I/O relation we obtain closed-form expressions for all second order statistics (input - internal state - output correlations and spectra), construct optimal linear estimators for the neuronal response and internal state and perform parameter identification. These results are guaranteed to hold, for a general stochastic biophysical neuron model, with only a few assumptions (mainly, timescale separation). We numerically test the resulting expressions for various models, and show that they hold well, even in cases where our assumptions fail to hold. In a companion paper we demonstrate how this approach enables us to fit a biophysical neuron model so it reproduces experimentally observed temporal firing statistics on days-long experiments.
许多生物系统受到未知的缓慢过程的调节。这可能会严重阻碍分析——特别是在兴奋性神经元中,它们是高度非线性和随机的系统。我们表明,如果输入与输出的稀疏“尖峰”性质相匹配,分析会大大简化。在这种情况下,可以半解析地推导出线性化的尖峰输入-输出 (I/O) 关系,根据已知的生物物理特性将输入尖峰序列与输出尖峰相关联。使用这个 I/O 关系,我们获得了所有二阶统计量(输入-内部状态-输出相关和谱)的封闭形式表达式,构建了神经元响应和内部状态的最优线性估计器,并进行了参数识别。这些结果对于具有少数假设(主要是时间尺度分离)的一般随机生物物理神经元模型是有保证的。我们对各种模型的结果表达式进行了数值测试,结果表明,即使在我们的假设不成立的情况下,这些表达式也能很好地成立。在一篇配套的论文中,我们展示了如何使用这种方法来拟合生物物理神经元模型,从而使其在多天的实验中再现实验观察到的时间发射统计数据。