Suppr超能文献

基于电导率的神经元模型与兴奋性的慢动力学。

Conductance-based neuron models and the slow dynamics of excitability.

机构信息

Department of Electrical Engineering, The Laboratory for Network Biology Research Technion, Haifa, Israel.

出版信息

Front Comput Neurosci. 2012 Feb 16;6:4. doi: 10.3389/fncom.2012.00004. eCollection 2012.

Abstract

In recent experiments, synaptically isolated neurons from rat cortical culture, were stimulated with periodic extracellular fixed-amplitude current pulses for extended durations of days. The neuron's response depended on its own history, as well as on the history of the input, and was classified into several modes. Interestingly, in one of the modes the neuron behaved intermittently, exhibiting irregular firing patterns changing in a complex and variable manner over the entire range of experimental timescales, from seconds to days. With the aim of developing a minimal biophysical explanation for these results, we propose a general scheme, that, given a few assumptions (mainly, a timescale separation in kinetics) closely describes the response of deterministic conductance-based neuron models under pulse stimulation, using a discrete time piecewise linear mapping, which is amenable to detailed mathematical analysis. Using this method we reproduce the basic modes exhibited by the neuron experimentally, as well as the mean response in each mode. Specifically, we derive precise closed-form input-output expressions for the transient timescale and firing rates, which are expressed in terms of experimentally measurable variables, and conform with the experimental results. However, the mathematical analysis shows that the resulting firing patterns in these deterministic models are always regular and repeatable (i.e., no chaos), in contrast to the irregular and variable behavior displayed by the neuron in certain regimes. This fact, and the sensitive near-threshold dynamics of the model, indicate that intrinsic ion channel noise has a significant impact on the neuronal response, and may help reproduce the experimentally observed variability, as we also demonstrate numerically. In a companion paper, we extend our analysis to stochastic conductance-based models, and show how these can be used to reproduce the details of the observed irregular and variable neuronal response.

摘要

在最近的实验中,使用周期性的固定幅度外源性电流脉冲刺激来自大鼠皮质培养物的突触分离神经元,持续刺激数天。神经元的反应取决于其自身的历史,以及输入的历史,并被分类为几种模式。有趣的是,在其中一种模式中,神经元表现出间歇性,表现出不规则的发射模式,在整个实验时间尺度范围内以复杂和可变的方式变化,从秒到天。为了为这些结果提供一个最小的生物物理解释,我们提出了一个一般方案,该方案在几个假设(主要是动力学中的时间尺度分离)的基础上,使用离散时间分段线性映射来紧密描述脉冲刺激下确定性电导神经元模型的响应,该映射易于进行详细的数学分析。使用这种方法,我们再现了神经元实验中表现出的基本模式以及每种模式的平均响应。具体来说,我们为瞬态时间尺度和发射率导出了精确的闭式输入-输出表达式,这些表达式以实验可测量的变量表示,并且与实验结果一致。然而,数学分析表明,这些确定性模型中的产生的发射模式总是规则且可重复的(即,没有混沌),与神经元在某些状态下显示的不规则和可变行为形成对比。这一事实以及模型的敏感近阈动力学表明,内在离子通道噪声对神经元反应有重大影响,并可能有助于重现实验观察到的可变性,我们也通过数值方法进行了证明。在一篇相关论文中,我们将分析扩展到随机电导模型,并展示如何使用这些模型来重现观察到的不规则和可变神经元反应的细节。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9790/3280430/9a9e89df06b4/fncom-06-00004-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验