Servicio de Microbiología, Hospital Universitario Son Espases, Instituto de Investigación Sanitaria de Palma (IdISPa), Palma de Mallorca, Spain.
Clin Microbiol Infect. 2014 Oct;20(10):981-90. doi: 10.1111/1469-0691.12651. Epub 2014 Jun 14.
Biofilms are organized bacterial communities embedded in an extracellular polymeric matrix attached to living or abiotic surfaces. The development of biofilms is currently recognized as one of the most relevant drivers of persistent infections. Among them, chronic respiratory infection by Pseudomonas aeruginosa in cystic fibrosis patients is probably the most intensively studied. The lack of correlation between conventional susceptibility test results and therapeutic success in chronic infections is probably a consequence of the use of planktonically growing instead of biofilm-growing bacteria. Therefore, several in vitro models to evaluate antimicrobial activity on biofilms have been implemented over the last decade. Microtitre plate-based assays, the Calgary device, substratum suspending reactors and the flow cell system are some of the most used in vitro biofilm models for susceptibility studies. Likewise, new pharmacodynamic parameters, including minimal biofilm inhibitory concentration, minimal biofilm-eradication concentration, biofilm bactericidal concentration, and biofilm-prevention concentration, have been defined in recent years to quantify antibiotic activity in biofilms. Using these parameters, several studies have shown very significant quantitative and qualitative differences for the effects of most antibiotics when acting on planktonic or biofilm bacteria. Nevertheless, standardization of the procedures, parameters and breakpoints, by official agencies, is needed before they are implemented in clinical microbiology laboratories for routine susceptibility testing. Research efforts should also be directed to obtaining a deeper understanding of biofilm resistance mechanisms, the evaluation of optimal pharmacokinetic/pharmacodynamic models for biofilm growth, and correlation with clinical outcome.
生物膜是由嵌入在附着于活体或无生命表面的细胞外聚合物基质中的细菌群落组成的。生物膜的形成是持续性感染的最主要驱动因素之一。在这些感染中,囊性纤维化患者由铜绿假单胞菌引起的慢性呼吸道感染可能是研究最深入的。慢性感染中常规药敏试验结果与治疗效果之间缺乏相关性,可能是由于使用浮游生长的细菌而不是生物膜生长的细菌所致。因此,在过去十年中,已经实施了几种评估抗生物膜活性的体外模型。微孔板测定、卡尔加里装置、基质悬浮反应器和流动细胞系统是用于药敏研究的最常用的几种体外生物膜模型之一。同样,近年来已经定义了新的药效动力学参数,包括最小生物膜抑制浓度、最小生物膜清除浓度、生物膜杀菌浓度和生物膜预防浓度,以量化抗生素在生物膜中的活性。使用这些参数,多项研究表明,当抗生素作用于浮游或生物膜细菌时,其效果在数量和质量上都存在显著差异。然而,在将其应用于临床微生物学实验室进行常规药敏测试之前,需要由官方机构对程序、参数和临界点进行标准化。研究工作还应致力于更深入地了解生物膜耐药机制,评估生物膜生长的最佳药代动力学/药效动力学模型,并与临床结果相关联。