Suppr超能文献

多体素分析和单变量分析之间的差异意味着什么?受试者、体素和试验水平的方差如何影响 fMRI 分析。

What do differences between multi-voxel and univariate analysis mean? How subject-, voxel-, and trial-level variance impact fMRI analysis.

机构信息

Department of Psychology, Texas Tech University, USA.

Department of Psychology, Stanford University, USA.

出版信息

Neuroimage. 2014 Aug 15;97:271-83. doi: 10.1016/j.neuroimage.2014.04.037. Epub 2014 Apr 21.

Abstract

Multi-voxel pattern analysis (MVPA) has led to major changes in how fMRI data are analyzed and interpreted. Many studies now report both MVPA results and results from standard univariate voxel-wise analysis, often with the goal of drawing different conclusions from each. Because MVPA results can be sensitive to latent multidimensional representations and processes whereas univariate voxel-wise analysis cannot, one conclusion that is often drawn when MVPA and univariate results differ is that the activation patterns underlying MVPA results contain a multidimensional code. In the current study, we conducted simulations to formally test this assumption. Our findings reveal that MVPA tests are sensitive to the magnitude of voxel-level variability in the effect of a condition within subjects, even when the same linear relationship is coded in all voxels. We also find that MVPA is insensitive to subject-level variability in mean activation across an ROI, which is the primary variance component of interest in many standard univariate tests. Together, these results illustrate that differences between MVPA and univariate tests do not afford conclusions about the nature or dimensionality of the neural code. Instead, targeted tests of the informational content and/or dimensionality of activation patterns are critical for drawing strong conclusions about the representational codes that are indicated by significant MVPA results.

摘要

多体素模式分析(MVPA)已经导致 fMRI 数据的分析和解释方式发生了重大变化。许多研究现在既报告 MVPA 结果,也报告标准的单变量体素分析结果,通常目标是从每个结果中得出不同的结论。由于 MVPA 结果可能对潜在的多维表示和过程敏感,而单变量体素分析则不能,因此当 MVPA 和单变量结果不同时,经常得出的一个结论是,MVPA 结果背后的激活模式包含一个多维代码。在当前的研究中,我们进行了模拟,以正式检验这一假设。我们的发现表明,MVPA 测试对受试者内条件效应的体素水平变异性的大小敏感,即使在所有体素中都编码了相同的线性关系。我们还发现,MVPA 对 ROI 中激活的平均受试者水平变异性不敏感,这是许多标准单变量测试中主要关注的方差成分。这些结果共同表明,MVPA 和单变量测试之间的差异并不能得出关于神经编码的性质或维度的结论。相反,对激活模式的信息内容和/或维度的有针对性的测试对于从显著的 MVPA 结果所指示的表示代码中得出强有力的结论至关重要。

相似文献

1
2
Distinguishing multi-voxel patterns and mean activation: why, how, and what does it tell us?
Cogn Affect Behav Neurosci. 2013 Sep;13(3):667-73. doi: 10.3758/s13415-013-0186-2.
4
Optimization of functional MRI for detection, decoding and high-resolution imaging of the response patterns of cortical columns.
Neuroimage. 2018 Jan 1;164:67-99. doi: 10.1016/j.neuroimage.2017.04.011. Epub 2017 Apr 28.
6
Confounds in multivariate pattern analysis: Theory and rule representation case study.
Neuroimage. 2013 Aug 15;77:157-65. doi: 10.1016/j.neuroimage.2013.03.039. Epub 2013 Apr 2.
9
Decoding information in the human hippocampus: a user's guide.
Neuropsychologia. 2012 Nov;50(13):3107-21. doi: 10.1016/j.neuropsychologia.2012.07.007. Epub 2012 Jul 20.
10
Coordinated multivoxel coding beyond univariate effects is not likely to be observable in fMRI data.
Neuroimage. 2022 Feb 15;247:118825. doi: 10.1016/j.neuroimage.2021.118825. Epub 2021 Dec 21.

引用本文的文献

1
Center-surround processing in psychosis.
medRxiv. 2025 Aug 19:2025.08.15.25333221. doi: 10.1101/2025.08.15.25333221.
2
Considerations for conducting developmental neuroimaging research on mental health topics.
Neuropsychopharmacology. 2025 Aug 30. doi: 10.1038/s41386-025-02221-0.
3
Individual differences in vicarious pain as a shift in the self-other boundary.
Imaging Neurosci (Camb). 2025 Jan 21;3. doi: 10.1162/imag_a_00422. eCollection 2025.
4
Widespread, perception-related information in the human brain scales with levels of consciousness.
Imaging Neurosci (Camb). 2024 Jul 29;2. doi: 10.1162/imag_a_00240. eCollection 2024.
5
In silico discovery of representational relationships across visual cortex.
Nat Hum Behav. 2025 Jun 25. doi: 10.1038/s41562-025-02252-z.
7
Neural representations in MPFC and insula encode individual differences in estimating others' preferences.
Soc Cogn Affect Neurosci. 2025 May 14;20(1). doi: 10.1093/scan/nsaf051.
9
Multi-voxel pattern analysis for developmental cognitive neuroscientists.
Dev Cogn Neurosci. 2025 Mar 25;73:101555. doi: 10.1016/j.dcn.2025.101555.

本文引用的文献

1
Distinguishing multi-voxel patterns and mean activation: why, how, and what does it tell us?
Cogn Affect Behav Neurosci. 2013 Sep;13(3):667-73. doi: 10.3758/s13415-013-0186-2.
2
Measuring neural representations with fMRI: practices and pitfalls.
Ann N Y Acad Sci. 2013 Aug;1296:108-34. doi: 10.1111/nyas.12156. Epub 2013 Jun 5.
3
Confounds in multivariate pattern analysis: Theory and rule representation case study.
Neuroimage. 2013 Aug 15;77:157-65. doi: 10.1016/j.neuroimage.2013.03.039. Epub 2013 Apr 2.
4
Global similarity and pattern separation in the human medial temporal lobe predict subsequent memory.
J Neurosci. 2013 Mar 27;33(13):5466-74. doi: 10.1523/JNEUROSCI.4293-12.2013.
5
A multivariate method to determine the dimensionality of neural representation from population activity.
Neuroimage. 2013 Aug 1;76:225-35. doi: 10.1016/j.neuroimage.2013.02.062. Epub 2013 Mar 22.
6
Quantifying the internal structure of categories using a neural typicality measure.
Cereb Cortex. 2014 Jul;24(7):1720-37. doi: 10.1093/cercor/bht014. Epub 2013 Feb 26.
7
Relationship between BOLD amplitude and pattern classification of orientation-selective activity in the human visual cortex.
Neuroimage. 2012 Nov 15;63(3):1212-22. doi: 10.1016/j.neuroimage.2012.08.005. Epub 2012 Aug 10.
8
Content representation in the human medial temporal lobe.
Cereb Cortex. 2013 Jan;23(1):80-96. doi: 10.1093/cercor/bhr379. Epub 2012 Jan 23.
9
Analyses of regional-average activation and multivoxel pattern information tell complementary stories.
Neuropsychologia. 2012 Mar;50(4):544-52. doi: 10.1016/j.neuropsychologia.2011.11.007. Epub 2011 Nov 11.
10
Comparing the similarity and spatial structure of neural representations: a pattern-component model.
Neuroimage. 2011 Apr 15;55(4):1665-78. doi: 10.1016/j.neuroimage.2011.01.044. Epub 2011 Jan 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验