Institute of Microbiology and Biotechnology, Rheinische Friedrich-Wilhelms-University Bonn Bonn, Germany.
Laboratory of Plant Physiology, Wageningen University Wageningen, Netherlands.
Front Microbiol. 2014 Apr 4;5:150. doi: 10.3389/fmicb.2014.00150. eCollection 2014.
We were able to demonstrate that hydroxyectoine, in contrast to ectoine, is a good glass-forming compound. Fourier transform infrared and spin label electron spin resonance studies of dry ectoine and hydroxyectoine have shown that the superior glass-forming properties of hydroxyectoine result from stronger intermolecular H-bonds with the OH group of hydroxyectoine. Spin probe experiments have also shown that better molecular immobilization in dry hydroxyectoine provides better redox stability of the molecules embedded in this dry matrix. With a glass transition temperature of 87°C (vs. 47°C for ectoine) hydroxyectoine displays remarkable desiccation protection properties, on a par with sucrose and trehalose. This explains its accumulation in response to increased salinity and elevated temperature by halophiles such as Halomonas elongata and its successful application in ``anhydrobiotic engineering'' of both enzymes and whole cells.
我们能够证明,羟基甜菜碱与海藻糖相比,是一种很好的玻璃形成化合物。对干燥的海藻糖和羟基甜菜碱进行傅里叶变换红外和自旋标记电子自旋共振研究表明,羟基甜菜碱具有更好的玻璃形成特性,是因为羟基甜菜碱中的 OH 基团形成了更强的分子间氢键。自旋探针实验还表明,在干燥的羟基甜菜碱中更好的分子固定化提供了更好的氧化还原稳定性,嵌入这种干燥基质中的分子。羟基甜菜碱的玻璃化转变温度为 87°C(而海藻糖为 47°C),具有显著的干燥保护特性,与蔗糖和海藻糖相当。这解释了它在嗜盐菌(如 Halomonas elongata)中对增加盐度和升高温度的响应积累,以及它在酶和整个细胞的“无定形工程”中的成功应用。