Czech Laura, Stöveken Nadine, Bremer Erhard
Laboratory for Microbiology, Department of Biology, Philipps-University at Marburg, 35043, Marburg, Germany.
LOEWE Center for Synthetic Microbiology, Philipps-University Marburg at Marburg, 35043, Marburg, Germany.
Microb Cell Fact. 2016 Jul 20;15(1):126. doi: 10.1186/s12934-016-0525-4.
Ectoine and its derivative 5-hydroxyectoine are cytoprotectants widely synthesized by microorganisms as a defense against the detrimental effects of high osmolarity on cellular physiology and growth. Both ectoines possess the ability to preserve the functionality of proteins, macromolecular complexes, and even entire cells, attributes that led to their description as chemical chaperones. As a consequence, there is growing interest in using ectoines for biotechnological purposes, in skin care, and in medical applications. 5-Hydroxyectoine is synthesized from ectoine through a region- and stereo-specific hydroxylation reaction mediated by the EctD enzyme, a member of the non-heme-containing iron(II) and 2-oxoglutarate-dependent dioxygenases. This chemical modification endows the newly formed 5-hydroxyectoine with either superior or different stress- protecting and stabilizing properties. Microorganisms producing 5-hydroxyectoine typically contain a mixture of both ectoines. We aimed to establish a recombinant microbial cell factory where 5-hydroxyectoine is (i) produced in highly purified form, and (ii) secreted into the growth medium.
We used an Escherichia coli strain (FF4169) defective in the synthesis of the osmostress protectant trehalose as the chassis for our recombinant cell factory. We expressed in this strain a plasmid-encoded ectD gene from Pseudomonas stutzeri A1501 under the control of the anhydrotetracycline-inducible tet promoter. We chose the ectoine hydroxylase from P. stutzeri A1501 for our cell factory after a careful comparison of the in vivo performance of seven different EctD proteins. In the final set-up of the cell factory, ectoine was provided to salt-stressed cultures of strain FF4169 (pMP41; ectD (+)). Ectoine was imported into the cells via the osmotically inducible ProP and ProU transport systems, intracellularly converted to 5-hydroxyectoine, which was then almost quantitatively secreted into the growth medium. Experiments with an E. coli mutant lacking all currently known mechanosensitive channels (MscL, MscS, MscK, MscM) revealed that the release of 5-hydroxyectoine under osmotic steady-state conditions occurred independently of these microbial safety valves. In shake-flask experiments, 2.13 g l(-1) ectoine (15 mM) was completely converted into 5-hydroxyectoine within 24 h.
We describe here a recombinant E. coli cell factory for the production and secretion of the chemical chaperone 5-hydroxyectoine free from contaminating ectoine.
四氢嘧啶及其衍生物5-羟基四氢嘧啶是微生物广泛合成的细胞保护剂,可抵御高渗透压对细胞生理和生长的有害影响。两种四氢嘧啶都具有保护蛋白质、大分子复合物甚至整个细胞功能的能力,这些特性使其被描述为化学伴侣。因此,人们越来越有兴趣将四氢嘧啶用于生物技术目的、皮肤护理和医学应用。5-羟基四氢嘧啶是通过由EctD酶介导的区域和立体特异性羟基化反应从四氢嘧啶合成的,EctD酶是不含血红素的铁(II)和2-氧代戊二酸依赖性双加氧酶家族的成员。这种化学修饰赋予新形成的5-羟基四氢嘧啶优异或不同的应激保护和稳定特性。产生5-羟基四氢嘧啶的微生物通常同时含有这两种四氢嘧啶。我们旨在建立一个重组微生物细胞工厂,在其中(i)以高度纯化的形式生产5-羟基四氢嘧啶,以及(ii)将其分泌到生长培养基中。
我们使用了一株在渗透应激保护剂海藻糖合成方面存在缺陷的大肠杆菌菌株(FF4169)作为重组细胞工厂的底盘。我们在脱水四环素诱导型tet启动子的控制下,在该菌株中表达了来自施氏假单胞菌A1501的质粒编码的ectD基因。在仔细比较了七种不同EctD蛋白的体内性能后,我们为细胞工厂选择了来自施氏假单胞菌A1501的四氢嘧啶羟化酶。在细胞工厂的最终设置中,将四氢嘧啶提供给菌株FF4169(pMP41;ectD(+))的盐胁迫培养物。四氢嘧啶通过渗透诱导型ProP和ProU转运系统导入细胞内,在细胞内转化为5-羟基四氢嘧啶,然后几乎定量地分泌到生长培养基中。对一株缺乏所有目前已知的机械敏感通道(MscL、MscS、MscK、MscM)的大肠杆菌突变体进行的实验表明,在渗透稳态条件下5-羟基四氢嘧啶的释放独立于这些微生物安全阀。在摇瓶实验中,2.13 g l(-1)四氢嘧啶(15 mM)在24小时内完全转化为5-羟基四氢嘧啶。
我们在此描述了一种重组大肠杆菌细胞工厂,用于生产和分泌不含污染性四氢嘧啶的化学伴侣5-羟基四氢嘧啶。