State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Chaoyang District, Beijing, 100101, China.
School of Life Sciences, Hebei University, Baoding, 071002, China.
Appl Microbiol Biotechnol. 2024 May 31;108(1):353. doi: 10.1007/s00253-024-13197-0.
Hydroxyectoine is an important compatible solute that holds potential for development into a high-value chemical with broad applications. However, the traditional high-salt fermentation for hydroxyectoine production presents challenges in treating the high-salt wastewater. Here, we report the rational engineering of Halomonas salifodinae to improve the bioproduction of hydroxyectoine under lower-salt conditions. The comparative transcriptomic analysis suggested that the increased expression of ectD gene encoding ectoine hydroxylase (EctD) and the decreased expressions of genes responsible for tricarboxylic acid (TCA) cycle contributed to the increased hydroxyectoine production in H. salifodinae IM328 grown under high-salt conditions. By blocking the degradation pathway of ectoine and hydroxyectoine, enhancing the expression of ectD, and increasing the supply of 2-oxoglutarate, the engineered H. salifodinae strain HS328-YNP15 (ΔdoeA::P-ectD p-gdh) produced 8.3-fold higher hydroxyectoine production than the wild-type strain and finally achieved a hydroxyectoine titer of 4.9 g/L in fed-batch fermentation without any detailed process optimization. This study shows the potential to integrate hydroxyectoine production into open unsterile fermentation process that operates under low-salinity and high-alkalinity conditions, paving the way for next-generation industrial biotechnology. KEY POINTS: • Hydroxyectoine production in H. salifodinae correlates with the salinity of medium • Transcriptomic analysis reveals the limiting factors for hydroxyectoine production • The engineered strain produced 8.3-fold more hydroxyectoine than the wild type.
羟基脯氨酸是一种重要的相容溶质,具有开发高价值化学品的潜力,应用广泛。然而,传统的高盐发酵生产羟基脯氨酸在处理高盐废水方面存在挑战。在这里,我们报告了对盐单胞菌的合理工程改造,以在低盐条件下提高羟基脯氨酸的生物产量。比较转录组分析表明,编码胞外酶羟化酶(EctD)的 ectD 基因的表达增加,以及负责三羧酸(TCA)循环的基因的表达减少,有助于在高盐条件下生长的盐单胞菌 IM328 中增加羟基脯氨酸的产量。通过阻断胞外酶和羟基脯氨酸的降解途径、增强 ectD 的表达以及增加 2-氧戊二酸的供应,工程化的盐单胞菌菌株 HS328-YNP15(ΔdoeA::P-ectD p-gdh)比野生型菌株的羟基脯氨酸产量提高了 8.3 倍,最终在无需任何详细过程优化的分批补料发酵中达到了 4.9 g/L 的羟基脯氨酸产量。这项研究表明,有可能将羟基脯氨酸的生产整合到低盐和高碱性条件下运行的开放式非无菌发酵工艺中,为下一代工业生物技术铺平道路。 关键点: • 盐单胞菌中的羟基脯氨酸生产与培养基的盐度相关 • 转录组分析揭示了羟基脯氨酸生产的限制因素 • 工程菌株比野生型菌株产生的羟基脯氨酸多 8.3 倍。