Suppr超能文献

水通道蛋白1的折叠:多条证据表明螺旋3可移出膜核心。

Folding of Aquaporin 1: multiple evidence that helix 3 can shift out of the membrane core.

作者信息

Virkki Minttu T, Agrawal Nitin, Edsbäcker Elin, Cristobal Susana, Elofsson Arne, Kauko Anni

机构信息

Department of Biochemistry and Biophysics and Science for Life Laboratory, Stockholm University, Solna, SE-171 21, Sweden.

出版信息

Protein Sci. 2014 Jul;23(7):981-92. doi: 10.1002/pro.2483. Epub 2014 May 14.

Abstract

The folding of most integral membrane proteins follows a two-step process: initially, individual transmembrane helices are inserted into the membrane by the Sec translocon. Thereafter, these helices fold to shape the final conformation of the protein. However, for some proteins, including Aquaporin 1 (AQP1), the folding appears to follow a more complicated path. AQP1 has been reported to first insert as a four-helical intermediate, where helix 2 and 4 are not inserted into the membrane. In a second step, this intermediate is folded into a six-helical topology. During this process, the orientation of the third helix is inverted. Here, we propose a mechanism for how this reorientation could be initiated: first, helix 3 slides out from the membrane core resulting in that the preceding loop enters the membrane. The final conformation could then be formed as helix 2, 3, and 4 are inserted into the membrane and the reentrant regions come together. We find support for the first step in this process by showing that the loop preceding helix 3 can insert into the membrane. Further, hydrophobicity curves, experimentally measured insertion efficiencies and MD-simulations suggest that the barrier between these two hydrophobic regions is relatively low, supporting the idea that helix 3 can slide out of the membrane core, initiating the rearrangement process.

摘要

大多数整合膜蛋白的折叠遵循两步过程

首先,单个跨膜螺旋通过Sec转位酶插入膜中。此后,这些螺旋折叠以形成蛋白质的最终构象。然而,对于一些蛋白质,包括水通道蛋白1(AQP1),折叠似乎遵循更复杂的路径。据报道,AQP1首先以四螺旋中间体的形式插入,其中螺旋2和4不插入膜中。在第二步中,该中间体折叠成六螺旋拓扑结构。在此过程中,第三螺旋的方向发生反转。在这里,我们提出了一种关于这种重新定向如何启动的机制:首先,螺旋3从膜核心滑出,导致前面的环进入膜中。然后,随着螺旋2、3和4插入膜中且折返区域聚集在一起,最终构象得以形成。我们通过证明螺旋3前面的环可以插入膜中来支持这一过程的第一步。此外,疏水曲线、实验测量的插入效率和分子动力学模拟表明,这两个疏水区域之间的屏障相对较低,支持螺旋3可以从膜核心滑出从而启动重排过程的观点。

相似文献

3
Cellular mechanisms of membrane protein folding.膜蛋白折叠的细胞机制。
Nat Struct Mol Biol. 2009 Jun;16(6):606-12. doi: 10.1038/nsmb.1600.
6
Structural Determinants of Oligomerization of the Aquaporin-4 Channel.水通道蛋白4通道寡聚化的结构决定因素。
J Biol Chem. 2016 Mar 25;291(13):6858-71. doi: 10.1074/jbc.M115.694729. Epub 2016 Jan 19.

引用本文的文献

1
Disease-linked supertrafficking of a potassium channel.疾病相关的钾通道超级转运。
J Biol Chem. 2021 Jan-Jun;296:100423. doi: 10.1016/j.jbc.2021.100423. Epub 2021 Feb 16.
3

本文引用的文献

5
Mechanisms of cellular uptake of cell-penetrating peptides.细胞穿透肽的细胞摄取机制。
J Biophys. 2011;2011:414729. doi: 10.1155/2011/414729. Epub 2011 Apr 7.
6
Free-energy cost for translocon-assisted insertion of membrane proteins.跨膜蛋白易位协助插入的自由能成本。
Proc Natl Acad Sci U S A. 2011 Mar 1;108(9):3596-601. doi: 10.1073/pnas.1012758108. Epub 2011 Feb 11.
8
A look at arginine in membranes.看看细胞膜中的精氨酸。
J Membr Biol. 2011 Jan;239(1-2):49-56. doi: 10.1007/s00232-010-9323-9. Epub 2010 Nov 25.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验