Suppr超能文献

均匀混沌网络作为速率/种群编码到时间编码的转换器。

Homogenous chaotic network serving as a rate/population code to temporal code converter.

作者信息

Kiselev Mikhail V

机构信息

Megaputer Intelligence Ltd., Office 403 Building 1, 69 Bakuninskaya Street, Moscow 105082, Russia.

出版信息

Comput Intell Neurosci. 2014;2014:476580. doi: 10.1155/2014/476580. Epub 2014 Mar 23.

Abstract

At present, it is obvious that different sections of nervous system utilize different methods for information coding. Primary afferent signals in most cases are represented in form of spike trains using a combination of rate coding and population coding while there are clear evidences that temporal coding is used in various regions of cortex. In the present paper, it is shown that conversion between these two coding schemes can be performed under certain conditions by a homogenous chaotic neural network. Interestingly, this effect can be achieved without network training and synaptic plasticity.

摘要

目前,很明显神经系统的不同部分采用不同的信息编码方法。在大多数情况下,初级传入信号以尖峰序列的形式表示,采用速率编码和群体编码相结合的方式,同时有明确证据表明时间编码在皮质的各个区域都有应用。在本文中,表明在某些条件下,一个均匀的混沌神经网络可以在这两种编码方案之间进行转换。有趣的是,这种效应可以在没有网络训练和突触可塑性的情况下实现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2d69/3980915/0a08660974af/CIN2014-476580.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验