Department of Plant Biology, University of Illinois Urbana, IL, USA.
Department of Biological Sciences, University of Idaho Moscow, ID, USA.
Front Genet. 2014 Apr 11;5:77. doi: 10.3389/fgene.2014.00077. eCollection 2014.
Predicting how species interactions evolve requires that we understand the mechanistic basis of coevolution, and thus the functional genotype-by-genotype interactions (G × G) that drive reciprocal natural selection. Theory on host-parasite coevolution provides testable hypotheses for empiricists, but depends upon models of functional G × G that remain loosely tethered to the molecular details of any particular system. In practice, reciprocal cross-infection studies are often used to partition the variation in infection or fitness in a population that is attributable to G × G (statistical G × G). Here we use simulations to demonstrate that within-population statistical G × G likely tells us little about the existence of coevolution, its strength, or the genetic basis of functional G × G. Combined with studies of multiple populations or points in time, mapping and molecular techniques can bridge the gap between natural variation and mechanistic models of coevolution, while model-based statistics can formally confront coevolutionary models with cross-infection data. Together these approaches provide a robust framework for inferring the infection genetics underlying statistical G × G, helping unravel the genetic basis of coevolution.
预测物种相互作用如何进化需要我们了解协同进化的机制基础,以及驱动相互自然选择的功能基因型-基因型相互作用(G×G)。宿主-寄生虫协同进化的理论为经验主义者提供了可检验的假说,但依赖于功能 G×G 的模型,这些模型仍然与任何特定系统的分子细节松散地联系在一起。实际上,互惠交叉感染研究经常用于将种群中归因于 G×G(统计 G×G)的感染或适应性变异进行划分。在这里,我们使用模拟来演示,在种群内统计 G×G 可能很少告诉我们关于协同进化的存在、其强度或功能 G×G 的遗传基础的信息。结合对多个种群或时间点的研究,作图和分子技术可以弥合自然变异与协同进化机制模型之间的差距,而基于模型的统计数据可以用交叉感染数据正式对抗协同进化模型。这些方法共同为推断统计 G×G 背后的感染遗传学提供了一个稳健的框架,有助于揭示协同进化的遗传基础。