Suppr超能文献

在共进化研究中通过基因型互作连接功能和统计定义的基因型。

Connecting functional and statistical definitions of genotype by genotype interactions in coevolutionary studies.

机构信息

Department of Plant Biology, University of Illinois Urbana, IL, USA.

Department of Biological Sciences, University of Idaho Moscow, ID, USA.

出版信息

Front Genet. 2014 Apr 11;5:77. doi: 10.3389/fgene.2014.00077. eCollection 2014.

Abstract

Predicting how species interactions evolve requires that we understand the mechanistic basis of coevolution, and thus the functional genotype-by-genotype interactions (G × G) that drive reciprocal natural selection. Theory on host-parasite coevolution provides testable hypotheses for empiricists, but depends upon models of functional G × G that remain loosely tethered to the molecular details of any particular system. In practice, reciprocal cross-infection studies are often used to partition the variation in infection or fitness in a population that is attributable to G × G (statistical G × G). Here we use simulations to demonstrate that within-population statistical G × G likely tells us little about the existence of coevolution, its strength, or the genetic basis of functional G × G. Combined with studies of multiple populations or points in time, mapping and molecular techniques can bridge the gap between natural variation and mechanistic models of coevolution, while model-based statistics can formally confront coevolutionary models with cross-infection data. Together these approaches provide a robust framework for inferring the infection genetics underlying statistical G × G, helping unravel the genetic basis of coevolution.

摘要

预测物种相互作用如何进化需要我们了解协同进化的机制基础,以及驱动相互自然选择的功能基因型-基因型相互作用(G×G)。宿主-寄生虫协同进化的理论为经验主义者提供了可检验的假说,但依赖于功能 G×G 的模型,这些模型仍然与任何特定系统的分子细节松散地联系在一起。实际上,互惠交叉感染研究经常用于将种群中归因于 G×G(统计 G×G)的感染或适应性变异进行划分。在这里,我们使用模拟来演示,在种群内统计 G×G 可能很少告诉我们关于协同进化的存在、其强度或功能 G×G 的遗传基础的信息。结合对多个种群或时间点的研究,作图和分子技术可以弥合自然变异与协同进化机制模型之间的差距,而基于模型的统计数据可以用交叉感染数据正式对抗协同进化模型。这些方法共同为推断统计 G×G 背后的感染遗传学提供了一个稳健的框架,有助于揭示协同进化的遗传基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1924/3990044/0d9a7cd34ef9/fgene-05-00077-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验