Department of Applied Physics, Biomedical and X-ray Physics, KTH Royal Institute of Technology, 10691 Stockholm, Sweden.
Int J Mol Sci. 2024 Jan 11;25(2):920. doi: 10.3390/ijms25020920.
Diffraction-limited resolution and low penetration depth are fundamental constraints in optical microscopy and in vivo imaging. Recently, liquid-jet X-ray technology has enabled the generation of X-rays with high-power intensities in laboratory settings. By allowing the observation of cellular processes in their natural state, liquid-jet soft X-ray microscopy (SXM) can provide morphological information on living cells without staining. Furthermore, X-ray fluorescence imaging (XFI) permits the tracking of contrast agents in vivo with high elemental specificity, going beyond attenuation contrast. In this study, we established a methodology to investigate nanoparticle (NP) interactions in vitro and in vivo, solely based on X-ray imaging. We employed soft (0.5 keV) and hard (24 keV) X-rays for cellular studies and preclinical evaluations, respectively. Our results demonstrated the possibility of localizing NPs in the intracellular environment via SXM and evaluating their biodistribution with in vivo multiplexed XFI. We envisage that laboratory liquid-jet X-ray technology will significantly contribute to advancing our understanding of biological systems in the field of nanomedical research.
在光学显微镜和活体成像中,衍射极限分辨率和低穿透深度是基本的限制因素。最近,液体喷射 X 射线技术使得在实验室环境中产生高强度功率的 X 射线成为可能。液体喷射软 X 射线显微镜(SXM)可以在不染色的情况下观察到细胞的自然状态,从而提供有关活细胞的形态信息。此外,X 射线荧光成像(XFI)可以在体内以高元素特异性跟踪造影剂,超越衰减对比。在这项研究中,我们建立了一种仅基于 X 射线成像来研究纳米颗粒(NP)在体外和体内相互作用的方法。我们分别使用软(0.5keV)和硬(24keV)X 射线进行细胞研究和临床前评估。我们的结果表明,通过 SXM 可以在细胞内环境中定位 NPs,并通过体内多重 XFI 评估它们的体内分布。我们设想,实验室液体喷射 X 射线技术将为纳米医学研究领域中对生物系统的理解做出重大贡献。