Choi Young-Soo, Wu Xuan, Lee Dong-Weon
MEMS and Nanotechnology Laboratory, School of Mechanical Engineering, Chonnam National University, Gwangju, South Korea.
Rev Sci Instrum. 2014 Apr;85(4):045002. doi: 10.1063/1.4870588.
In this study, we introduce a selective thermochemical nano-patterning method of graphene on insulating substrates. A tiny heater formed at the end of an atomic force microscope (AFM) cantilever is optimized by a finite element method. The cantilever device is fabricated using conventional micromachining processes. After preliminary tests of the cantilever device, nano-patterning experiments are conducted with various conducting and insulating samples. The results indicate that faster scanning speed and higher contact force are desirable to reduce the sizes of nano-patterns. With the experimental condition of 1 μm/s and 24 mW, the heated AFM tip generates a graphene oxide layer of 3.6 nm height and 363 nm width, on a 300 nm thick SiO2 layer, with a tip contact force of 100 nN.
在本研究中,我们介绍了一种在绝缘衬底上对石墨烯进行选择性热化学纳米图案化的方法。通过有限元方法对形成于原子力显微镜(AFM)悬臂末端的微型加热器进行了优化。该悬臂装置采用传统微加工工艺制造。在对悬臂装置进行初步测试后,对各种导电和绝缘样品进行了纳米图案化实验。结果表明,为减小纳米图案的尺寸,需要更快的扫描速度和更高的接触力。在1μm/s和24mW的实验条件下,加热的AFM针尖在300nm厚的SiO2层上产生了高度为3.6nm、宽度为363nm的氧化石墨烯层,针尖接触力为100nN。