Suppr超能文献

药物相互作用的文本挖掘

Text mining for drug-drug interaction.

作者信息

Wu Heng-Yi, Chiang Chien-Wei, Li Lang

机构信息

Center for Computational Biology and Bioinformatics, School of Informatics, Indiana University, 410 W. 10th Street, Suite 5000, Indianapolis, IN, 46202, USA.

出版信息

Methods Mol Biol. 2014;1159:47-75. doi: 10.1007/978-1-4939-0709-0_4.

Abstract

In order to understand the mechanisms of drug-drug interaction (DDI), the study of pharmacokinetics (PK), pharmacodynamics (PD), and pharmacogenetics (PG) data are significant. In recent years, drug PK parameters, drug interaction parameters, and PG data have been unevenly collected in different databases and published extensively in literature. Also the lack of an appropriate PK ontology and a well-annotated PK corpus, which provide the background knowledge and the criteria of determining DDI, respectively, lead to the difficulty of developing DDI text mining tools for PK data collection from the literature and data integration from multiple databases.To conquer the issues, we constructed a comprehensive pharmacokinetics ontology. It includes all aspects of in vitro pharmacokinetics experiments, in vivo pharmacokinetics studies, as well as drug metabolism and transportation enzymes. Using our pharmacokinetics ontology, a PK corpus was constructed to present four classes of pharmacokinetics abstracts: in vivo pharmacokinetics studies, in vivo pharmacogenetic studies, in vivo drug interaction studies, and in vitro drug interaction studies. A novel hierarchical three-level annotation scheme was proposed and implemented to tag key terms, drug interaction sentences, and drug interaction pairs. The utility of the pharmacokinetics ontology was demonstrated by annotating three pharmacokinetics studies; and the utility of the PK corpus was demonstrated by a drug interaction extraction text mining analysis.The pharmacokinetics ontology annotates both in vitro pharmacokinetics experiments and in vivo pharmacokinetics studies. The PK corpus is a highly valuable resource for the text mining of pharmacokinetics parameters and drug interactions.

摘要

为了理解药物相互作用(DDI)的机制,对药代动力学(PK)、药效学(PD)和药物遗传学(PG)数据的研究具有重要意义。近年来,药物PK参数、药物相互作用参数和PG数据在不同数据库中的收集情况参差不齐,并在文献中广泛发表。此外,缺乏合适的PK本体和注释良好的PK语料库,分别为确定DDI提供背景知识和标准,这导致难以开发用于从文献中收集PK数据和从多个数据库进行数据整合的DDI文本挖掘工具。为了解决这些问题,我们构建了一个全面的药代动力学本体。它涵盖了体外药代动力学实验、体内药代动力学研究以及药物代谢和转运酶的各个方面。利用我们的药代动力学本体,构建了一个PK语料库,以呈现四类药代动力学摘要:体内药代动力学研究、体内药物遗传学研究、体内药物相互作用研究和体外药物相互作用研究。提出并实施了一种新颖的分层三级注释方案,以标记关键术语、药物相互作用句子和药物相互作用对。通过注释三项药代动力学研究证明了药代动力学本体的实用性;通过药物相互作用提取文本挖掘分析证明了PK语料库的实用性。药代动力学本体对体外药代动力学实验和体内药代动力学研究都进行了注释。PK语料库是用于药代动力学参数和药物相互作用文本挖掘的极有价值的资源。

相似文献

1
Text mining for drug-drug interaction.药物相互作用的文本挖掘
Methods Mol Biol. 2014;1159:47-75. doi: 10.1007/978-1-4939-0709-0_4.
3
Translational drug-interaction corpus.药物相互作用翻译语料库。
Database (Oxford). 2022 May 18;2022. doi: 10.1093/database/baac031.

引用本文的文献

1
Effects of three flavonoids on the metabolism of lenvatinib.三种黄酮类化合物对乐伐替尼代谢的影响。
Front Pharmacol. 2024 Aug 20;15:1438259. doi: 10.3389/fphar.2024.1438259. eCollection 2024.
4
Past and future uses of text mining in ecology and evolution.文本挖掘在生态学和进化中的过去和未来用途。
Proc Biol Sci. 2022 May 25;289(1975):20212721. doi: 10.1098/rspb.2021.2721. Epub 2022 May 18.

本文引用的文献

8
Natural language processing: an introduction.自然语言处理:入门。
J Am Med Inform Assoc. 2011 Sep-Oct;18(5):544-51. doi: 10.1136/amiajnl-2011-000464.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验