Suppr超能文献

受激发射损耗(STED)显微镜揭示了脆性X综合征小鼠模型中树突棘形态发生发育轨迹的纳米级缺陷。

Stimulated emission depletion (STED) microscopy reveals nanoscale defects in the developmental trajectory of dendritic spine morphogenesis in a mouse model of fragile X syndrome.

作者信息

Wijetunge Lasani S, Angibaud Julie, Frick Andreas, Kind Peter C, Nägerl U Valentin

机构信息

Patrick Wild Centre, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom, Interdisciplinary Institute for Neuroscience, Université de Bordeaux, Bordeaux 33077, France, Interdisciplinary Institute for Neuroscience, Centre National de la Recherche Scientifique UMR 5297, Bordeaux 33077, France, Institut National de la Santé et de la Recherche Médicale, Université de Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U862, Bordeaux 33077, France, and Centre for Brain Development and Repair, inStem, Bangalore, India.

出版信息

J Neurosci. 2014 Apr 30;34(18):6405-12. doi: 10.1523/JNEUROSCI.5302-13.2014.

Abstract

Dendritic spines are basic units of neuronal information processing and their structure is closely reflected in their function. Defects in synaptic development are common in neurodevelopmental disorders, making detailed knowledge of age-dependent changes in spine morphology essential for understanding disease mechanisms. However, little is known about the functionally important fine-morphological structures, such as spine necks, due to the limited spatial resolution of conventional light microscopy. Using stimulated emission depletion microscopy (STED), we examined spine morphology at the nanoscale during normal development in mice, and tested the hypothesis that it is impaired in a mouse model of fragile X syndrome (FXS). In contrast to common belief, we find that, in normal development, spine heads become smaller, while their necks become wider and shorter, indicating that synapse compartmentalization decreases substantially with age. In the mouse model of FXS, this developmental trajectory is largely intact, with only subtle differences that are dependent on age and brain region. Together, our findings challenge current dogmas of both normal spine development as well as spine dysgenesis in FXS, highlighting the importance of super-resolution imaging approaches for elucidating structure-function relationships of dendritic spines.

摘要

树突棘是神经元信息处理的基本单位,其结构与其功能密切相关。突触发育缺陷在神经发育障碍中很常见,因此详细了解树突棘形态随年龄的变化对于理解疾病机制至关重要。然而,由于传统光学显微镜的空间分辨率有限,对于诸如树突棘颈部等功能重要的精细形态结构知之甚少。我们使用受激发射损耗显微镜(STED),在小鼠正常发育过程中以纳米尺度检查树突棘形态,并测试了脆性X综合征(FXS)小鼠模型中其受到损害的假设。与普遍看法相反,我们发现在正常发育过程中,树突棘头部变小,而其颈部变宽变短,这表明随着年龄增长,突触分隔显著减少。在FXS小鼠模型中,这种发育轨迹基本完整,仅存在取决于年龄和脑区的细微差异。总之,我们的研究结果挑战了当前关于正常树突棘发育以及FXS中树突棘发育异常的教条,突出了超分辨率成像方法对于阐明树突棘结构-功能关系的重要性。

相似文献

3
Dendritic Spines in Early Postnatal Fragile X Mice Are Insensitive to Novel Sensory Experience.
J Neurosci. 2019 Jan 16;39(3):412-419. doi: 10.1523/JNEUROSCI.1734-18.2018. Epub 2018 Dec 6.
4
Modulation of dendritic spines and synaptic function by Rac1: a possible link to Fragile X syndrome pathology.
Brain Res. 2011 Jul 5;1399:79-95. doi: 10.1016/j.brainres.2011.05.020. Epub 2011 May 17.
5
Alterations in CA1 hippocampal synapses in a mouse model of fragile X syndrome.
Glia. 2018 Apr;66(4):789-800. doi: 10.1002/glia.23284. Epub 2017 Dec 23.
6
Delayed stabilization of dendritic spines in fragile X mice.
J Neurosci. 2010 Jun 9;30(23):7793-803. doi: 10.1523/JNEUROSCI.0577-10.2010.
7
Spine neck plasticity regulates compartmentalization of synapses.
Nat Neurosci. 2014 May;17(5):678-85. doi: 10.1038/nn.3682. Epub 2014 Mar 23.
9
Developmental characteristics of dendritic spines in the dentate gyrus of Fmr1 knockout mice.
Brain Res. 2010 Oct 8;1355:221-7. doi: 10.1016/j.brainres.2010.07.090. Epub 2010 Aug 2.
10

引用本文的文献

1
Clinical parameters affect the structure and function of superficial pyramidal neurons in the adult human neocortex.
Brain Commun. 2024 Oct 7;6(5):fcae351. doi: 10.1093/braincomms/fcae351. eCollection 2024.
2
From wings to whiskers to stem cells: why every model matters in fragile X syndrome research.
J Neurodev Disord. 2024 Jun 13;16(1):30. doi: 10.1186/s11689-024-09545-w.
3
Current Best Practices for Analysis of Dendritic Spine Morphology and Number in Neurodevelopmental Disorder Research.
ACS Chem Neurosci. 2023 May 3;14(9):1561-1572. doi: 10.1021/acschemneuro.3c00062. Epub 2023 Apr 18.
4
Mouse models of fragile X-related disorders.
Dis Model Mech. 2023 Feb 1;16(2). doi: 10.1242/dmm.049485. Epub 2023 Jan 24.
5
FMRP and CYFIP1 at the Synapse and Their Role in Psychiatric Vulnerability.
Complex Psychiatry. 2020 Oct;6(1-2):5-19. doi: 10.1159/000506858. Epub 2020 Mar 3.
6
Rett Syndrome and Fragile X Syndrome: Different Etiology With Common Molecular Dysfunctions.
Front Cell Neurosci. 2021 Nov 19;15:764761. doi: 10.3389/fncel.2021.764761. eCollection 2021.
7
Super-resolution imaging to reveal the nanostructure of tripartite synapses.
Neuronal Signal. 2021 Oct 14;5(4):NS20210003. doi: 10.1042/NS20210003. eCollection 2021 Dec.
8
Interneuron Dysfunction and Inhibitory Deficits in Autism and Fragile X Syndrome.
Cells. 2021 Oct 1;10(10):2610. doi: 10.3390/cells10102610.
10

本文引用的文献

1
Spine neck plasticity regulates compartmentalization of synapses.
Nat Neurosci. 2014 May;17(5):678-85. doi: 10.1038/nn.3682. Epub 2014 Mar 23.
2
Two-photon excitation STED microscopy in two colors in acute brain slices.
Biophys J. 2013 Feb 19;104(4):778-85. doi: 10.1016/j.bpj.2012.12.054.
3
Synapse-specific and size-dependent mechanisms of spine structural plasticity accompanying synaptic weakening.
Proc Natl Acad Sci U S A. 2013 Jan 22;110(4):E305-12. doi: 10.1073/pnas.1214705110. Epub 2012 Dec 26.
4
Synaptic amplification by dendritic spines enhances input cooperativity.
Nature. 2012 Nov 22;491(7425):599-602. doi: 10.1038/nature11554. Epub 2012 Oct 28.
5
The trouble with spines in fragile X syndrome: density, maturity and plasticity.
Neuroscience. 2013 Oct 22;251:120-8. doi: 10.1016/j.neuroscience.2012.03.049. Epub 2012 Apr 20.
6
Dendritic spines and distributed circuits.
Neuron. 2011 Sep 8;71(5):772-81. doi: 10.1016/j.neuron.2011.07.024.
7
Dendritic spine pathology in neuropsychiatric disorders.
Nat Neurosci. 2011 Mar;14(3):285-93. doi: 10.1038/nn.2741.
8
Dendritic spine instability and insensitivity to modulation by sensory experience in a mouse model of fragile X syndrome.
Proc Natl Acad Sci U S A. 2010 Oct 12;107(41):17768-73. doi: 10.1073/pnas.1012496107. Epub 2010 Sep 22.
9
Delayed stabilization of dendritic spines in fragile X mice.
J Neurosci. 2010 Jun 9;30(23):7793-803. doi: 10.1523/JNEUROSCI.0577-10.2010.
10
Mapping of fluorescent protein-expressing neurons and axon pathways in adult and developing Thy1-eYFP-H transgenic mice.
Brain Res. 2010 Jul 23;1345:59-72. doi: 10.1016/j.brainres.2010.05.061. Epub 2010 May 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验