Suppr超能文献

受激发射损耗(STED)显微镜揭示了脆性X综合征小鼠模型中树突棘形态发生发育轨迹的纳米级缺陷。

Stimulated emission depletion (STED) microscopy reveals nanoscale defects in the developmental trajectory of dendritic spine morphogenesis in a mouse model of fragile X syndrome.

作者信息

Wijetunge Lasani S, Angibaud Julie, Frick Andreas, Kind Peter C, Nägerl U Valentin

机构信息

Patrick Wild Centre, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom, Interdisciplinary Institute for Neuroscience, Université de Bordeaux, Bordeaux 33077, France, Interdisciplinary Institute for Neuroscience, Centre National de la Recherche Scientifique UMR 5297, Bordeaux 33077, France, Institut National de la Santé et de la Recherche Médicale, Université de Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U862, Bordeaux 33077, France, and Centre for Brain Development and Repair, inStem, Bangalore, India.

出版信息

J Neurosci. 2014 Apr 30;34(18):6405-12. doi: 10.1523/JNEUROSCI.5302-13.2014.

Abstract

Dendritic spines are basic units of neuronal information processing and their structure is closely reflected in their function. Defects in synaptic development are common in neurodevelopmental disorders, making detailed knowledge of age-dependent changes in spine morphology essential for understanding disease mechanisms. However, little is known about the functionally important fine-morphological structures, such as spine necks, due to the limited spatial resolution of conventional light microscopy. Using stimulated emission depletion microscopy (STED), we examined spine morphology at the nanoscale during normal development in mice, and tested the hypothesis that it is impaired in a mouse model of fragile X syndrome (FXS). In contrast to common belief, we find that, in normal development, spine heads become smaller, while their necks become wider and shorter, indicating that synapse compartmentalization decreases substantially with age. In the mouse model of FXS, this developmental trajectory is largely intact, with only subtle differences that are dependent on age and brain region. Together, our findings challenge current dogmas of both normal spine development as well as spine dysgenesis in FXS, highlighting the importance of super-resolution imaging approaches for elucidating structure-function relationships of dendritic spines.

摘要

树突棘是神经元信息处理的基本单位,其结构与其功能密切相关。突触发育缺陷在神经发育障碍中很常见,因此详细了解树突棘形态随年龄的变化对于理解疾病机制至关重要。然而,由于传统光学显微镜的空间分辨率有限,对于诸如树突棘颈部等功能重要的精细形态结构知之甚少。我们使用受激发射损耗显微镜(STED),在小鼠正常发育过程中以纳米尺度检查树突棘形态,并测试了脆性X综合征(FXS)小鼠模型中其受到损害的假设。与普遍看法相反,我们发现在正常发育过程中,树突棘头部变小,而其颈部变宽变短,这表明随着年龄增长,突触分隔显著减少。在FXS小鼠模型中,这种发育轨迹基本完整,仅存在取决于年龄和脑区的细微差异。总之,我们的研究结果挑战了当前关于正常树突棘发育以及FXS中树突棘发育异常的教条,突出了超分辨率成像方法对于阐明树突棘结构-功能关系的重要性。

相似文献

6
Delayed stabilization of dendritic spines in fragile X mice.脆性 X 小鼠树突棘的延迟稳定。
J Neurosci. 2010 Jun 9;30(23):7793-803. doi: 10.1523/JNEUROSCI.0577-10.2010.
7
Spine neck plasticity regulates compartmentalization of synapses.脊柱颈段可塑性调节突触的分区。
Nat Neurosci. 2014 May;17(5):678-85. doi: 10.1038/nn.3682. Epub 2014 Mar 23.

引用本文的文献

4
Mouse models of fragile X-related disorders.脆性 X 相关疾病的小鼠模型。
Dis Model Mech. 2023 Feb 1;16(2). doi: 10.1242/dmm.049485. Epub 2023 Jan 24.
7
Super-resolution imaging to reveal the nanostructure of tripartite synapses.超分辨率成像揭示三联突触的纳米结构。
Neuronal Signal. 2021 Oct 14;5(4):NS20210003. doi: 10.1042/NS20210003. eCollection 2021 Dec.

本文引用的文献

1
Spine neck plasticity regulates compartmentalization of synapses.脊柱颈段可塑性调节突触的分区。
Nat Neurosci. 2014 May;17(5):678-85. doi: 10.1038/nn.3682. Epub 2014 Mar 23.
4
Synaptic amplification by dendritic spines enhances input cooperativity.树突棘的突触放大增强了输入协同性。
Nature. 2012 Nov 22;491(7425):599-602. doi: 10.1038/nature11554. Epub 2012 Oct 28.
6
Dendritic spines and distributed circuits.树突棘和分布式电路。
Neuron. 2011 Sep 8;71(5):772-81. doi: 10.1016/j.neuron.2011.07.024.
9
Delayed stabilization of dendritic spines in fragile X mice.脆性 X 小鼠树突棘的延迟稳定。
J Neurosci. 2010 Jun 9;30(23):7793-803. doi: 10.1523/JNEUROSCI.0577-10.2010.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验