Suppr超能文献

基因集富集分析变得简单。

Gene set enrichment analysis made simple.

机构信息

Department of Biostatistics, Johns Hopkins School of Public Health, Baltimore, MD 21205, USA.

出版信息

Stat Methods Med Res. 2009 Dec;18(6):565-75. doi: 10.1177/0962280209351908.

Abstract

Among the many applications of microarray technology, one of the most popular is the identification of genes that are differentially expressed in two conditions. A common statistical approach is to quantify the interest of each gene with a p-value, adjust these p-values for multiple comparisons, choose an appropriate cut-off, and create a list of candidate genes. This approach has been criticised for ignoring biological knowledge regarding how genes work together. Recently a series of methods, that do incorporate biological knowledge, have been proposed. However, the most popular method, gene set enrichment analysis (GSEA), seems overly complicated. Furthermore, GSEA is based on a statistical test known for its lack of sensitivity. In this article we compare the performance of a simple alternative to GSEA. We find that this simple solution clearly outperforms GSEA. We demonstrate this with eight different microarray datasets.

摘要

在微阵列技术的众多应用中,其中一个最受欢迎的是识别在两种条件下差异表达的基因。一种常见的统计方法是用 p 值量化每个基因的兴趣,对这些 p 值进行多次比较调整,选择一个合适的截止值,并创建候选基因列表。这种方法受到了批评,因为它忽略了关于基因如何协同工作的生物学知识。最近,提出了一系列确实包含生物学知识的方法。然而,最流行的方法,基因集富集分析(GSEA),似乎过于复杂。此外,GSEA 基于一种统计检验,该检验因其缺乏敏感性而受到批评。在本文中,我们比较了 GSEA 的一种简单替代方法的性能。我们发现这个简单的解决方案明显优于 GSEA。我们用八个不同的微阵列数据集证明了这一点。

相似文献

1
Gene set enrichment analysis made simple.基因集富集分析变得简单。
Stat Methods Med Res. 2009 Dec;18(6):565-75. doi: 10.1177/0962280209351908.
3
Comparative study of gene set enrichment methods.基因集富集方法的比较研究。
BMC Bioinformatics. 2009 Sep 2;10:275. doi: 10.1186/1471-2105-10-275.
7
A multivariate extension of the gene set enrichment analysis.基因集富集分析的多元扩展。
J Bioinform Comput Biol. 2007 Oct;5(5):1139-53. doi: 10.1142/s0219720007003041.

引用本文的文献

2
Informatics at the Frontier of Cancer Research.癌症研究前沿的信息学
Cancer Res. 2025 Aug 15;85(16):2967-2986. doi: 10.1158/0008-5472.CAN-24-2829.
6
Mining single-cell data for cell type-disease associations.挖掘单细胞数据以寻找细胞类型与疾病的关联。
NAR Genom Bioinform. 2024 Dec 18;6(4):lqae180. doi: 10.1093/nargab/lqae180. eCollection 2024 Dec.

本文引用的文献

1
Using GOstats to test gene lists for GO term association.使用GOstats测试基因列表与GO术语的关联性。
Bioinformatics. 2007 Jan 15;23(2):257-8. doi: 10.1093/bioinformatics/btl567. Epub 2006 Nov 10.
5
Discovering statistically significant pathways in expression profiling studies.在基因表达谱研究中发现具有统计学意义的通路。
Proc Natl Acad Sci U S A. 2005 Sep 20;102(38):13544-9. doi: 10.1073/pnas.0506577102. Epub 2005 Sep 8.
6
PAGE: parametric analysis of gene set enrichment.PAGE:基因集富集的参数分析
BMC Bioinformatics. 2005 Jun 8;6:144. doi: 10.1186/1471-2105-6-144.
7
On the utility of pooling biological samples in microarray experiments.关于在微阵列实验中合并生物样品的效用。
Proc Natl Acad Sci U S A. 2005 Mar 22;102(12):4252-7. doi: 10.1073/pnas.0500607102. Epub 2005 Mar 8.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验