State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Laboratory of Food Microbial-Manufacturing Engineering, Jiangnan University, Wuxi 214122, China.
State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Laboratory of Food Microbial-Manufacturing Engineering, Jiangnan University, Wuxi 214122, China.
Trends Biotechnol. 2014 Jun;32(6):337-43. doi: 10.1016/j.tibtech.2014.04.003. Epub 2014 Apr 29.
Redox balance plays an important role in the production of enzymes, pharmaceuticals, and chemicals. To meet the demands of industrial production, it is desirable that microbes maintain a maximal carbon flux towards target metabolites with no fluctuations in redox. This requires functional cofactor systems that support dynamic homeostasis between different redox states or functional stability in a given redox state. Redox balance can be achieved by improving the self-balance of a cofactor system, regulating the substrate balance of a cofactor system, and engineering the synthetic balance of a cofactor system. This review summarizes how cofactor systems can be manipulated to improve redox balance in microbes.
氧化还原平衡在酶、药物和化学品的生产中起着重要作用。为了满足工业生产的需求,微生物最好能够保持最大的碳通量流向目标代谢物,氧化还原状态没有波动。这需要功能辅酶系统来支持不同氧化还原状态之间的动态动态平衡或给定氧化还原状态下的功能稳定性。氧化还原平衡可以通过提高辅酶系统的自我平衡、调节辅酶系统的底物平衡和工程化辅酶系统的合成平衡来实现。本文综述了如何操纵辅酶系统来改善微生物中的氧化还原平衡。