Suppr超能文献

姜酚在细胞培养物和肥胖型糖尿病模型小鼠中抗糖尿病作用的机制。

Mechanisms for antidiabetic effect of gingerol in cultured cells and obese diabetic model mice.

机构信息

Department of Applied Life Science, Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan.

出版信息

Cytotechnology. 2015 Aug;67(4):641-52. doi: 10.1007/s10616-014-9730-3. Epub 2014 May 4.

Abstract

There have been studies on health beneficial effects of ginger and its components. However, there still remain certain aspects that are not well defined in their anti-hyperglycemic effects. Our aims were to find evidence of possible mechanisms for antidiabetic action of [6]-gingerol, a pungent component of ginger, employing a rat skeletal muscle-derived cell line, a rat-derived pancreatic β-cell line, and type 2 diabetic model animals. The antidiabetic effect of [6]-gingerol was investigated through studies on glucose uptake in L6 myocytes and on pancreatic β-cell protective ability from reactive oxygen species (ROS) in RIN-5F cells. Its in vivo effect was also examined using obese diabetic db/db mice. [6]-Gingerol increased glucose uptake under insulin absent condition and induced 5' adenosine monophosphate-activated protein kinase phosphorylation in L6 myotubes. Promotion by [6]-gingerol of glucose transporter 4 (GLUT4) translocation to plasma membrane was visually demonstrated by immunocytochemistry in L6 myoblasts transfected with glut4 cDNA-coding vector. [6]-Gingerol suppressed advanced glycation end product-induced rise of ROS levels in RIN-5F pancreatic β-cells. [6]-Gingerol feeding suppressed the increases in fasting blood glucose levels and improved glucose intolerance in db/db mice. [6]-Gingerol regulated hepatic gene expression of enzymes related to glucose metabolism toward decreases in gluconeogenesis and glycogenolysis as well as an increase in glycogenesis, thereby contributing to reductions in hepatic glucose production and hence blood glucose concentrations. These in vitro and in vivo results strongly suggest that [6]-gingerol has antidiabetic potential through multiple mechanisms.

摘要

已有研究关注姜及其成分对健康的有益影响。然而,其在降血糖方面的某些作用机制仍未完全明确。我们的目的是在大鼠骨骼肌衍生细胞系、大鼠胰腺β细胞系和 2 型糖尿病模型动物中寻找证据,以证明姜辣素([6]-gingerol)这种姜的辛辣成分具有抗糖尿病作用的可能机制。通过研究 L6 肌细胞的葡萄糖摄取和 RIN-5F 细胞中活性氧(ROS)对胰腺β细胞的保护作用,研究了[6]-gingerol 的降血糖作用。还使用肥胖型糖尿病 db/db 小鼠研究了其体内作用。[6]-gingerol 在无胰岛素的情况下增加葡萄糖摄取,并在 L6 肌管中诱导 5'腺苷一磷酸激活蛋白激酶磷酸化。通过免疫细胞化学在转染 glut4 cDNA 编码载体的 L6 成肌细胞中,直观地显示了[6]-gingerol 促进葡萄糖转运蛋白 4(GLUT4)向质膜转位。[6]-gingerol 抑制晚期糖基化终产物诱导的 RIN-5F 胰腺β细胞中 ROS 水平升高。[6]-gingerol 喂养可抑制 db/db 小鼠空腹血糖水平升高并改善葡萄糖耐量。[6]-gingerol 通过降低糖异生和糖原分解以及增加糖生成来调节肝脏与葡萄糖代谢相关酶的基因表达,从而有助于减少肝葡萄糖生成,进而降低血糖浓度。这些体外和体内结果强烈表明,[6]-gingerol 通过多种机制具有抗糖尿病潜力。

相似文献

1
Mechanisms for antidiabetic effect of gingerol in cultured cells and obese diabetic model mice.
Cytotechnology. 2015 Aug;67(4):641-52. doi: 10.1007/s10616-014-9730-3. Epub 2014 May 4.
2
Aspalathin improves hyperglycemia and glucose intolerance in obese diabetic ob/ob mice.
Eur J Nutr. 2013 Sep;52(6):1607-19. doi: 10.1007/s00394-012-0466-6. Epub 2012 Dec 13.
3
Antidiabetic effect of enterolactone in cultured muscle cells and in type 2 diabetic model db/db mice.
Cytotechnology. 2017 Jun;69(3):493-502. doi: 10.1007/s10616-016-9965-2. Epub 2016 Mar 21.
4
Antidiabetic effect of green rooibos (Aspalathus linearis) extract in cultured cells and type 2 diabetic model KK-A(y) mice.
Cytotechnology. 2015 Aug;67(4):699-710. doi: 10.1007/s10616-014-9816-y. Epub 2014 Nov 20.
7
Antidiabetic effect of nepodin, a component of Rumex roots, and its modes of action in vitro and in vivo.
Biofactors. 2014 Jul-Aug;40(4):436-47. doi: 10.1002/biof.1165. Epub 2014 Apr 23.
8
Antihyperglycemic effect of equol, a daidzein derivative, in cultured L6 myocytes and ob/ob mice.
Mol Nutr Food Res. 2014 Feb;58(2):267-77. doi: 10.1002/mnfr.201300272. Epub 2013 Sep 3.

引用本文的文献

1
Insights into biological activities profile of gingerols and shogaols for potential pharmacological applications.
Arch Pharm Res. 2025 Aug;48(7-8):638-675. doi: 10.1007/s12272-025-01559-9. Epub 2025 Aug 4.
2
Natural products targeting AMPK signaling pathway therapy, diabetes mellitus and its complications.
Front Pharmacol. 2025 Feb 3;16:1534634. doi: 10.3389/fphar.2025.1534634. eCollection 2025.
5
Plant-Derived Nutraceuticals Involved in Body Weight Control by Modulating Gene Expression.
Plants (Basel). 2023 Jun 11;12(12):2273. doi: 10.3390/plants12122273.
7
A systematic analysis of anti-diabetic medicinal plants from cells to clinical trials.
PeerJ. 2023 Jan 5;11:e14639. doi: 10.7717/peerj.14639. eCollection 2023.
10
Botanical Interventions to Improve Glucose Control and Options for Diabetes Therapy.
SN Compr Clin Med. 2021 Dec;3(12):2465-2491. doi: 10.1007/s42399-021-01034-8. Epub 2021 Aug 15.

本文引用的文献

1
Antihyperglycemic effect of equol, a daidzein derivative, in cultured L6 myocytes and ob/ob mice.
Mol Nutr Food Res. 2014 Feb;58(2):267-77. doi: 10.1002/mnfr.201300272. Epub 2013 Sep 3.
3
Hyperglycemia-induced oxidative stress and its role in diabetes mellitus related cardiovascular diseases.
Curr Pharm Des. 2013;19(32):5695-703. doi: 10.2174/1381612811319320005.
4
Aspalathin improves hyperglycemia and glucose intolerance in obese diabetic ob/ob mice.
Eur J Nutr. 2013 Sep;52(6):1607-19. doi: 10.1007/s00394-012-0466-6. Epub 2012 Dec 13.
7
Advanced glycation end-products induce injury to pancreatic beta cells through oxidative stress.
Diabetes Metab. 2012 Jun;38(3):250-7. doi: 10.1016/j.diabet.2012.01.003. Epub 2012 Mar 3.
8
10
Regulatory mechanism for the stimulatory action of genistein on glucose uptake in vitro and in vivo.
J Nutr Biochem. 2012 May;23(5):501-9. doi: 10.1016/j.jnutbio.2011.02.007. Epub 2011 Jun 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验