Suppr超能文献

一种在智能护齿器中使用支持向量机分类和接近感应的头部撞击检测系统。

A head impact detection system using SVM classification and proximity sensing in an instrumented mouthguard.

作者信息

Wu Lyndia C, Zarnescu Livia, Nangia Vaibhav, Cam Bruce, Camarillo David B

出版信息

IEEE Trans Biomed Eng. 2014 Nov;61(11):2659-68. doi: 10.1109/TBME.2014.2320153. Epub 2014 Apr 25.

Abstract

Injury from blunt head impacts causes acute neurological deficits and may lead to chronic neurodegeneration. A head impact detection device can serve both as a research tool for studying head injury mechanisms and a clinical tool for real-time trauma screening. The simplest approach is an acceleration thresholding algorithm, which may falsely detect high-acceleration spurious events such as manual manipulation of the device. We designed a head impact detection system that distinguishes head impacts from nonimpacts through two subsystems. First, we use infrared proximity sensing to determine if the mouthguard is worn on the teeth to filter out all off-teeth events. Second, on-teeth, nonimpact events are rejected using a support vector machine classifier trained on frequency domain features of linear acceleration and rotational velocity. The remaining events are classified as head impacts. In a controlled laboratory evaluation, the present system performed substantially better than a 10-g acceleration threshold in head impact detection (98% sensitivity, 99.99% specificity, 99% accuracy, and 99.98% precision, compared to 92% sensitivity, 58% specificity, 65% accuracy, and 37% precision). Once adapted for field deployment by training and validation with field data, this system has the potential to effectively detect head trauma in sports, military service, and other high-risk activities.

摘要

钝性头部撞击造成急性神经功能缺损,并可能导致慢性神经退行性变。头部撞击检测装置既可以作为研究头部损伤机制的研究工具,也可以作为实时创伤筛查的临床工具。最简单的方法是加速度阈值算法,该算法可能会错误地检测到高加速度的虚假事件,如对装置的手动操作。我们设计了一种头部撞击检测系统,该系统通过两个子系统区分头部撞击和非撞击情况。首先,我们使用红外接近感应来确定护齿器是否戴在牙齿上,以滤除所有未戴在牙齿上的事件。其次,对于戴在牙齿上的非撞击事件,使用基于线性加速度和旋转速度频域特征训练的支持向量机分类器进行排除。其余事件则被分类为头部撞击。在一项受控实验室评估中,本系统在头部撞击检测方面的表现明显优于10g加速度阈值(灵敏度为98%,特异性为99.99%,准确率为99%,精确率为99.98%,相比之下,10g加速度阈值的灵敏度为92%,特异性为58%,准确率为65%,精确率为37%)。一旦通过现场数据进行训练和验证以适应现场部署,该系统就有可能在体育、军事服务和其他高风险活动中有效检测头部创伤。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验