Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio 43210, USA ; Centre for Affordable Nanoengineering of Polymeric Biomedical Devices, The Ohio State University, Columbus, Ohio 43210, USA.
Centre for Affordable Nanoengineering of Polymeric Biomedical Devices, The Ohio State University, Columbus, Ohio 43210, USA.
Biomicrofluidics. 2014 Apr 16;8(2):024114. doi: 10.1063/1.4871595. eCollection 2014 Mar.
Investigation of single molecule DNA dynamics in confined environments has led to important applications in DNA analysis, separation, and sequencing. Here, we studied the electrophoretic transport of DNA molecules through nanochannels shorter than the DNA contour length and calculated the associated translocation time curves. We found that the longer T4 DNA molecules required a longer time to traverse a fixed length nanochannel than shorter λ DNA molecules and that the translocation time decreased with increasing electric field which agreed with theoretical predictions. We applied this knowledge to design an asymmetric electric pulse and demonstrate the different responses of λ and T4 DNA to the pulses. We used Brownian dynamics simulations to corroborate our experimental results on DNA translocation behaviour. This work contributes to the fundamental understanding of polymer transport through nanochannels and may help in designing better separation techniques in the future.
在受限环境中研究单分子 DNA 的动力学,已经在 DNA 分析、分离和测序方面得到了重要的应用。在这里,我们研究了 DNA 分子通过短于 DNA 轮廓长度的纳米通道的电泳传输,并计算了相关的迁移时间曲线。我们发现,较长的 T4 DNA 分子比较短的 λ DNA 分子需要更长的时间来穿过固定长度的纳米通道,并且迁移时间随着电场的增加而减小,这与理论预测一致。我们利用这一知识设计了一种非对称的电脉冲,并演示了 λ 和 T4 DNA 对脉冲的不同响应。我们使用布朗动力学模拟来证实我们关于 DNA 迁移行为的实验结果。这项工作有助于深入了解聚合物通过纳米通道的传输,并且可能有助于未来设计更好的分离技术。