Suppr超能文献

DNA 跨短纳米流道在非对称脉冲电场中的转位。

DNA translocation through short nanofluidic channels under asymmetric pulsed electric field.

机构信息

Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio 43210, USA ; Centre for Affordable Nanoengineering of Polymeric Biomedical Devices, The Ohio State University, Columbus, Ohio 43210, USA.

Centre for Affordable Nanoengineering of Polymeric Biomedical Devices, The Ohio State University, Columbus, Ohio 43210, USA.

出版信息

Biomicrofluidics. 2014 Apr 16;8(2):024114. doi: 10.1063/1.4871595. eCollection 2014 Mar.

Abstract

Investigation of single molecule DNA dynamics in confined environments has led to important applications in DNA analysis, separation, and sequencing. Here, we studied the electrophoretic transport of DNA molecules through nanochannels shorter than the DNA contour length and calculated the associated translocation time curves. We found that the longer T4 DNA molecules required a longer time to traverse a fixed length nanochannel than shorter λ DNA molecules and that the translocation time decreased with increasing electric field which agreed with theoretical predictions. We applied this knowledge to design an asymmetric electric pulse and demonstrate the different responses of λ and T4 DNA to the pulses. We used Brownian dynamics simulations to corroborate our experimental results on DNA translocation behaviour. This work contributes to the fundamental understanding of polymer transport through nanochannels and may help in designing better separation techniques in the future.

摘要

在受限环境中研究单分子 DNA 的动力学,已经在 DNA 分析、分离和测序方面得到了重要的应用。在这里,我们研究了 DNA 分子通过短于 DNA 轮廓长度的纳米通道的电泳传输,并计算了相关的迁移时间曲线。我们发现,较长的 T4 DNA 分子比较短的 λ DNA 分子需要更长的时间来穿过固定长度的纳米通道,并且迁移时间随着电场的增加而减小,这与理论预测一致。我们利用这一知识设计了一种非对称的电脉冲,并演示了 λ 和 T4 DNA 对脉冲的不同响应。我们使用布朗动力学模拟来证实我们关于 DNA 迁移行为的实验结果。这项工作有助于深入了解聚合物通过纳米通道的传输,并且可能有助于未来设计更好的分离技术。

相似文献

1
DNA translocation through short nanofluidic channels under asymmetric pulsed electric field.
Biomicrofluidics. 2014 Apr 16;8(2):024114. doi: 10.1063/1.4871595. eCollection 2014 Mar.
3
Theoretical study of the transpore velocity control of single-stranded DNA.
Int J Mol Sci. 2014 Aug 11;15(8):13817-32. doi: 10.3390/ijms150813817.
4
Electrokinetically-driven transport of DNA through focused ion beam milled nanofluidic channels.
Anal Chem. 2013 Jan 15;85(2):1146-53. doi: 10.1021/ac303074f. Epub 2012 Dec 24.
5
Stretching of DNA confined in nanochannels with charged walls.
Biomicrofluidics. 2014 Dec 10;8(6):064121. doi: 10.1063/1.4904008. eCollection 2014 Nov.
7
Influence of temperature gradients on charge transport in asymmetric nanochannels.
Phys Chem Chem Phys. 2017 Oct 25;19(41):28232-28238. doi: 10.1039/c7cp03281a.
9
Fabrication of nanofluidic biochips with nanochannels for applications in DNA analysis.
Small. 2012 Sep 24;8(18):2787-801. doi: 10.1002/smll.201200240. Epub 2012 Jul 9.
10
Nanochannel confinement: DNA stretch approaching full contour length.
Lab Chip. 2011 May 21;11(10):1721-9. doi: 10.1039/c0lc00680g. Epub 2011 Mar 23.

引用本文的文献

1
In Situ Electroporation on PERFECT Filter for High-Efficiency and High-Viability Tumor Cell Labeling.
Micromachines (Basel). 2022 Apr 26;13(5):672. doi: 10.3390/mi13050672.
2
Flow of DNA in micro/nanofluidics: From fundamentals to applications.
Biomicrofluidics. 2016 Jul 20;10(4):043403. doi: 10.1063/1.4958719. eCollection 2016 Jul.
3
Analysis of single nucleic acid molecules in micro- and nano-fluidics.
Lab Chip. 2016 Mar 7;16(5):790-811. doi: 10.1039/c5lc01294e.
4
Study of flow rate induced measurement error in flow-through nano-hole plasmonic sensor.
Biomicrofluidics. 2015 Nov 25;9(6):064111. doi: 10.1063/1.4936863. eCollection 2015 Nov.
5
Fundamental studies of nanofluidics: nanopores, nanochannels, and nanopipets.
Anal Chem. 2015 Jan 6;87(1):172-87. doi: 10.1021/ac504180h. Epub 2014 Dec 3.

本文引用的文献

1
PROBING SINGLE DNA MOLECULE TRANSPORT USING FABRICATED NANOPORES.
Nano Lett. 2004 Nov;4(11):2293-2298. doi: 10.1021/nl048654j.
2
Presentation of large DNA molecules for analysis as nanoconfined dumbbells.
Macromolecules. 2013 Oct 22;46(20):8356-8368. doi: 10.1021/ma400926h.
3
Statistics of DNA capture by a solid-state nanopore.
Phys Rev Lett. 2013 Jan 11;110(2):028102. doi: 10.1103/PhysRevLett.110.028102. Epub 2013 Jan 7.
5
Electrokinetically-driven transport of DNA through focused ion beam milled nanofluidic channels.
Anal Chem. 2013 Jan 15;85(2):1146-53. doi: 10.1021/ac303074f. Epub 2012 Dec 24.
6
Modulating DNA translocation by a controlled deformation of a PDMS nanochannel device.
Sci Rep. 2012;2:791. doi: 10.1038/srep00791. Epub 2012 Nov 9.
7
Beyond gel electrophoresis: microfluidic separations, fluorescence burst analysis, and DNA stretching.
Chem Rev. 2013 Apr 10;113(4):2584-667. doi: 10.1021/cr3002142. Epub 2012 Nov 12.
8
Entropy-driven single molecule tug-of-war of DNA at micro-nanofluidic interfaces.
Nano Lett. 2012 Mar 14;12(3):1597-602. doi: 10.1021/nl2045292. Epub 2012 Feb 23.
9
Electrokinetic DNA transport in 20 nm-high nanoslits: evidence for movement through a wall-adsorbed.
Electrophoresis. 2011 Sep;32(18):2402-9. doi: 10.1002/elps.201100278. Epub 2011 Aug 26.
10
Simulation of DNA Extension in Nanochannels.
Macromolecules. 2011 Aug 23;44(16):6594-6604. doi: 10.1021/ma201277e.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验