Department of Chemistry and Interdisciplinary Program of Integrated Biotechnology, Sogang University, Seoul, 121-742, Republic of Korea.
Lab Chip. 2011 May 21;11(10):1721-9. doi: 10.1039/c0lc00680g. Epub 2011 Mar 23.
Fully stretched DNA molecules are becoming a fundamental component of new systems for comprehensive genome analysis. Among a number of approaches for elongating DNA molecules, nanofluidic molecular confinement has received enormous attentions from physical and biological communities for the last several years. Here we demonstrate a well-optimized condition that a DNA molecule can stretch almost to its full contour length: the average stretch is 19.1 µm ± 1.1 µm for YOYO-1 stained λ DNA (21.8 µm contour length) in 250 nm × 400 nm channel, which is the longest stretch value ever reported in any nanochannels or nanoslits. In addition, based on Odijk's polymer physics theory, we interpret our experimental findings as a function of channel dimensions and ionic strengths. Furthermore, we develop a Monte Carlo simulation approach using a primitive model for the rigorous understanding of DNA confinement effects. Collectively, we present a more complete understanding of nanochannel confined DNA stretching via the comparisons to computer simulation results and Odijk's polymer physics theory.
充分拉伸的 DNA 分子正成为综合基因组分析新系统的基本组成部分。在延长 DNA 分子的多种方法中,纳米流体分子限制在过去几年中受到了物理和生物界的极大关注。在这里,我们展示了一个经过良好优化的条件,使 DNA 分子可以几乎完全拉伸到其全长:在 250nm×400nm 的通道中,YOYO-1 染色的 λ DNA(21.8µm 轮廓长度)的平均拉伸长度为 19.1µm±1.1µm,这是在任何纳米通道或纳米狭缝中报道的最长拉伸值。此外,基于 Odijk 的聚合物物理理论,我们将实验结果解释为通道尺寸和离子强度的函数。此外,我们还开发了一种使用原始模型的蒙特卡罗模拟方法,以严格理解 DNA 限制效应。总的来说,我们通过与计算机模拟结果和 Odijk 的聚合物物理理论的比较,对纳米通道限制 DNA 拉伸有了更全面的理解。