Lee Young Ho, Kim Jae-Hoon, Song Gwan Gyu
Division of Rheumatology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, 126-1 5 ga, Anam-dong, Seongbuk-gu, Seoul, 136-705, Korea,
Tumour Biol. 2014 Aug;35(8):7699-705. doi: 10.1007/s13277-014-2027-5. Epub 2014 May 8.
The aim of this study was to identify candidate single-nucleotide polymorphisms (SNPs) that might affect susceptibility to breast cancer and then elucidate their potential mechanisms and generate SNP-to-gene-to-pathway hypotheses. A genome-wide association study (GWAS) dataset of breast cancer that included 453,852 SNPs from 1,145 breast cancer patients and 1,142 control subjects of European descent was used in this study. The identify candidate causal SNPs and pathways (ICSNPathway) method was applied to the GWAS dataset. ICSNPathway analysis identified 16 candidate SNPs, 13 genes, and 7 pathways, which together revealed 7 hypothetical biological mechanisms. The strongest hypothetical biological mechanism was that rs3168891 and rs2899849 alter the role of MBIP in the inactivation of mitogen-activated protein kinase (MAPK) (p < 0.001; false discovery rate (FDR) = 0.038). The second strongest mechanism was that rs2229714 modulates RPS6KA1 to affect its role in growth hormone signaling (p = 0.001; FDR = 0.039). The third strongest mechanism was that rs2230394 modulates ITGB1 to regulate the PTEN pathway and hsa04360 (axon guidance pathway) (p < 0.001; FDR = 0.039, 0.041). Use of the ICSNPathway to analyze breast cancer GWAS data identified 16 candidate SNPs, 13 genes (including MBIP, RPS6KA1, and ITGB1), and 7 pathways that might contribute to the susceptibility of patients to breast cancer.
本研究的目的是识别可能影响乳腺癌易感性的候选单核苷酸多态性(SNP),然后阐明其潜在机制并生成SNP-基因-通路假说。本研究使用了一个乳腺癌的全基因组关联研究(GWAS)数据集,该数据集包含来自1145名乳腺癌患者和1142名欧洲血统对照受试者的453,852个SNP。将识别候选因果SNP和通路(ICSNPathway)方法应用于GWAS数据集。ICSNPathway分析确定了16个候选SNP、13个基因和7条通路,共同揭示了7种假设的生物学机制。最强的假设生物学机制是rs3168891和rs2899849改变了MBIP在丝裂原活化蛋白激酶(MAPK)失活中的作用(p < 0.001;错误发现率(FDR)= 0.038)。第二强的机制是rs2229714调节RPS6KA1以影响其在生长激素信号传导中的作用(p = 0.001;FDR = 0.039)。第三强的机制是rs2230394调节ITGB1以调节PTEN通路和hsa04360(轴突导向通路)(p < 0.001;FDR = 0.039,0.041)。使用ICSNPathway分析乳腺癌GWAS数据确定了16个候选SNP、13个基因(包括MBIP、RPS6KA1和ITGB1)和7条通路,这些可能导致患者对乳腺癌的易感性。