Suppr超能文献

基于永磁液滴的微型机器人。

Permanent magnetic droplet-derived microrobots.

作者信息

Cao Yuanxiong, Xie Ruoxiao, Schönhöfer Philipp W A, Burdis Ross, Wang Richard, Sun Rujie, Xie Kai, Zou Jiawen, Song Xin, Lau Qiao You, Lin Junliang, Kim Jang Ah, Georgiev Dimitar, Tang Jiyuan, Ng Ho-Cheung, Bibikova Olga, Zuo Yuyang, Lu Xiangrong L, Glotzer Sharon C, Stevens Molly M

机构信息

Department of Physiology, Anatomy and Genetics, Department of Engineering Science, Kavli Institute for Nanoscience Discovery, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.

Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK.

出版信息

Sci Adv. 2025 Jul 11;11(28):eadw3172. doi: 10.1126/sciadv.adw3172. Epub 2025 Jul 9.

Abstract

Microrobots hold substantial potential for precision medicine. However, challenges remain in balancing multifunctional cargo loading with efficient locomotion and in predicting behavior in complex biological environments. Here, we present permanent magnetic droplet-derived microrobots (PMDMs) with superior cargo loading capacity and dynamic locomotion capabilities. Produced rapidly via cascade tubing microfluidics, PMDMs can self-assemble, disassemble, and reassemble into chains that autonomously switch among four locomotion modes-walking, crawling, swinging, and lateral movement. Their reconfigurable design allows navigation through complex and constrained biomimetic environments, including obstacle negotiation and stair climbing with record speed at the submillimeter scale. We also developed a molecular dynamics-based computational platform that predicts PMDM assembly and motion. PMDMs demonstrated precise, programmable cargo delivery (e.g., drugs and cells) with postdelivery retrieval. These results establish a physical and in silico foundation for future microrobot design and represent a key step toward clinical translation.

摘要

微型机器人在精准医疗方面具有巨大潜力。然而,在平衡多功能货物装载与高效运动以及预测其在复杂生物环境中的行为方面仍存在挑战。在此,我们展示了源自永磁液滴的微型机器人(PMDMs),其具有卓越的货物装载能力和动态运动能力。通过级联微管微流控技术快速生产的PMDMs能够自我组装、拆卸并重新组装成链条,这些链条可在行走、爬行、摆动和横向移动这四种运动模式之间自主切换。它们的可重构设计使其能够在复杂且受限的仿生环境中导航,包括在亚毫米尺度下以创纪录的速度进行障碍物规避和爬楼梯。我们还开发了一个基于分子动力学的计算平台,用于预测PMDMs的组装和运动。PMDMs展示了精确的、可编程的货物递送(如药物和细胞)以及递送后回收。这些结果为未来微型机器人的设计奠定了物理和计算机模拟基础,并代表了向临床转化迈出的关键一步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f603/12239960/e85c7214d860/sciadv.adw3172-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验