Lai Huan-Ju, Kuan Chen-Hsiang, Wu Hsi-Chin, Tsai Jui-Che, Chen Tim-Mo, Hsieh Dar-Jen, Wang Tzu-Wei
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan.
Department of Plastic Surgery, National Taiwan University Hospital Hsinchu Branch, Hsinchu, Taiwan.
Acta Biomater. 2014 Oct;10(10):4156-66. doi: 10.1016/j.actbio.2014.05.001. Epub 2014 May 9.
The objective of this research study is to develop a collagen (Col) and hyaluronic acid (HA) inter-stacking nanofibrous skin equivalent substitute with the programmable release of multiple angiogenic growth factors (vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF), basic fibroblast growth factor (bFGF) and endothelial growth factor (EGF)) either directly embedded in the nanofibers or encapsulated in the gelatin nanoparticles (GNs) by electrospinning technology. The delivery of EGF and bFGF in the early stage is expected to accelerate epithelialization and vasculature sprouting, while the release of PDGF and VEGF in the late stage is with the aim of inducing blood vessels maturation. The physiochemical characterizations indicate that the Col-HA-GN nanofibrous membrane possesses mechanical properties similar to human native skin. The design of a particle-in-fiber structure allows growth factors for slow controlled release up to 1month. Cultured on biodegradable Col-HA membrane with four kinds of growth factors (Col-HA w/4GF), endothelial cells not only increase in growth rate but also form a better network with a thread-like tubular structure. The therapeutic effect of Col-HA w/4GF membrane on streptozotocin (STZ)-induced diabetic rats reveals an accelerated wound closure rate, together with elevated collagen deposition and enhanced maturation of vessels, as revealed by Masson's trichrome stain and immunohistochemical analysis, respectively. From the above, the electrospun Col-HA-GN composite nanofibrous skin substitute with a stage-wise release pattern of multiple angiogenic factors could be a promising bioengineered construct for chronic wound healing in skin tissue regeneration.
本研究的目的是通过静电纺丝技术开发一种胶原蛋白(Col)和透明质酸(HA)交替堆叠的纳米纤维皮肤等效替代物,该替代物能够以可编程方式释放多种血管生成生长因子(血管内皮生长因子(VEGF)、血小板衍生生长因子(PDGF)、碱性成纤维细胞生长因子(bFGF)和内皮生长因子(EGF)),这些生长因子既可以直接嵌入纳米纤维中,也可以封装在明胶纳米颗粒(GNs)中。预计早期释放的EGF和bFGF能够加速上皮形成和血管发芽,而后期释放的PDGF和VEGF旨在诱导血管成熟。物理化学表征表明,Col-HA-GN纳米纤维膜具有与人类天然皮肤相似的机械性能。纤维中含颗粒结构的设计使生长因子能够缓慢控制释放长达1个月。在内含四种生长因子的可生物降解Col-HA膜(Col-HA w/4GF)上培养时,内皮细胞不仅生长速率增加,而且形成具有丝状管状结构的更好网络。Col-HA w/4GF膜对链脲佐菌素(STZ)诱导的糖尿病大鼠的治疗效果显示,伤口闭合速率加快,同时胶原沉积增加,血管成熟增强,分别通过Masson三色染色和免疫组织化学分析得以揭示。综上所述,具有多种血管生成因子阶段性释放模式的电纺Col-HA-GN复合纳米纤维皮肤替代物可能是皮肤组织再生中慢性伤口愈合的一种有前景的生物工程构建物。
Acta Biomater. 2017-9-15
Mater Sci Eng C Mater Biol Appl. 2019-8-13
Acta Biomater. 2013-8-2
Int J Biol Macromol. 2018-11-27
J Clin Transl Endocrinol. 2024-8-30
Heliyon. 2024-7-22
J Diabetes Metab Disord. 2023-10-17
Bioeng Transl Med. 2023-12-28
Front Bioeng Biotechnol. 2023-9-22
Biomater Res. 2023-9-16