Newman Adam G, Vagstad Anna L, Storm Philip A, Townsend Craig A
Department of Chemistry, The Johns Hopkins University , 3400 N. Charles Street, Baltimore, Maryland 21218, United States.
J Am Chem Soc. 2014 May 21;136(20):7348-62. doi: 10.1021/ja5007299. Epub 2014 May 9.
Iterative, nonreducing polyketide synthases (NR-PKSs) are multidomain enzymes responsible for the construction of the core architecture of aromatic polyketide natural products in fungi. Engineering these enzymes for the production of non-native metabolites has been a long-standing goal. We conducted a systematic survey of in vitro "domain swapped" NR-PKSs using an enzyme deconstruction approach. The NR-PKSs were dissected into mono- to multidomain fragments and recombined as noncognate pairs in vitro, reconstituting enzymatic activity. The enzymes used in this study produce aromatic polyketides that are representative of the four main chemical features set by the individual NR-PKS: starter unit selection, chain-length control, cyclization register control, and product release mechanism. We found that boundary conditions limit successful chemistry, which are dependent on a set of underlying enzymatic mechanisms. Crucial for successful redirection of catalysis, the rate of productive chemistry must outpace the rate of spontaneous derailment and thioesterase-mediated editing. Additionally, all of the domains in a noncognate system must interact efficiently if chemical redirection is to proceed. These observations refine and further substantiate current understanding of the mechanisms governing NR-PKS catalysis.
迭代非还原聚酮合酶(NR-PKSs)是多结构域酶,负责构建真菌中芳香族聚酮天然产物的核心结构。通过工程改造这些酶来生产非天然代谢产物一直是一个长期目标。我们使用酶解构方法对体外“结构域交换”的NR-PKSs进行了系统研究。将NR-PKSs分解为单结构域到多结构域片段,并在体外重组为非同源对,从而恢复酶活性。本研究中使用的酶产生的芳香族聚酮化合物代表了单个NR-PKS设定的四个主要化学特征:起始单元选择、链长控制、环化寄存器控制和产物释放机制。我们发现边界条件限制了成功的化学反应,这取决于一组潜在的酶促机制。对于催化的成功重定向至关重要的是,有效化学反应的速率必须超过自发脱轨和硫酯酶介导的编辑速率。此外,如果要进行化学重定向,非同源系统中的所有结构域必须有效相互作用。这些观察结果完善并进一步证实了目前对NR-PKS催化机制的理解。