Chen Haotong, Du Liangcheng
Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.
Appl Microbiol Biotechnol. 2016 Jan;100(2):541-57. doi: 10.1007/s00253-015-7093-0. Epub 2015 Nov 9.
Modular polyketide synthases (type I PKSs) in bacteria are responsible for synthesizing a significant percentage of bioactive natural products. This group of synthases has a characteristic modular organization, and each module within a PKS carries out one cycle of polyketide chain elongation; thus each module is non-iterative in function. It was possible to predict the basic structure of a polyketide product from the module organization of the PKSs, since there generally existed a co-linearity between the number of modules and the number of chain elongations. However, more and more bacterial modular PKSs fail to conform to the canonical rules, and a particularly noteworthy group of non-canonical PKSs is the bacterial iterative type I PKSs. This review covers recent examples of iteratively used modular PKSs in bacteria. These non-canonical PKSs give rise to a large array of natural products with impressive structural diversity. The molecular mechanism behind the iterations is often unclear, presenting a new challenge to the rational engineering of these PKSs with the goal of generating new natural products. Structural elucidation of these synthase complexes and better understanding of potential PKS-PKS interactions as well as PKS-substrate recognition may provide new prospects and inspirations for the discovery and engineering of new bioactive polyketides.
细菌中的模块化聚酮合酶(I型聚酮合酶)负责合成相当比例的生物活性天然产物。这一类合酶具有独特的模块化结构,聚酮合酶中的每个模块执行一轮聚酮链延伸反应;因此每个模块的功能是非迭代性的。由于模块数量与链延伸次数之间通常存在共线性关系,所以根据聚酮合酶的模块结构预测聚酮产物的基本结构是可行的。然而,越来越多的细菌模块化聚酮合酶不符合经典规则,一类特别值得注意的非经典聚酮合酶是细菌迭代型I型聚酮合酶。本综述涵盖了细菌中迭代使用模块化聚酮合酶的最新实例。这些非经典聚酮合酶产生了大量结构多样、令人印象深刻的天然产物。迭代背后的分子机制往往尚不清楚,这给以生成新天然产物为目标的这些聚酮合酶的合理工程改造带来了新挑战。这些合酶复合物的结构解析以及对潜在的聚酮合酶-聚酮合酶相互作用和聚酮合酶-底物识别的更好理解,可能为新型生物活性聚酮化合物的发现和工程改造提供新的前景和灵感。